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Abstract

This paper examines the identification and estimation of heterogeneous treatment

effects in event studies, emphasizing the importance of both lagged dependent vari-

ables and treatment effect heterogeneity. We show that omitting lagged dependent

variables can induce omitted variable bias in the estimated time-varying treatment ef-

fects. We develop a novel semiparametric approach based on a short-T dynamic linear

panel model with correlated random coefficients, where the time-varying heterogeneous

treatment effects can be modeled by a time-series process to reduce dimensionality. We

construct a two-step estimator employing quasi-maximum likelihood for common pa-

rameters and empirical Bayes for the heterogeneous treatment effects. The procedure

is flexible, easy to implement, and achieves ratio optimality asymptotically. Our results

also provide insights into common assumptions in the event study literature, such as

no anticipation, homogeneous treatment effects across treatment timing cohorts, and

state dependence structure.
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1 Introduction

Event study methods have been a cornerstone for tracing dynamic treatment effects in em-

pirical research across economics, finance, public policy, and related fields. Indeed, between

2020 and 2024, over thirty papers employing event study or dynamic difference-in-differences

were published in the American Economic Review. The most common implementation is via

the two-way fixed-effects (TWFE) regression, which aligns units by event time rather than

calendar time, allowing researchers to estimate dynamic responses to treatments and inter-

ventions, while controlling for unobserved heterogeneity that is constant over time within

units (i.e., unit effects) and/or common across units within time (i.e., time effects). In

practice, researchers often estimate

Yit = αi + γt +
J∑

j=−L

Dj
itδj +X ′

itβ + Uit,

where Dj
it indicates that unit i is j periods from its event date, Xit are observed covariates,

αi and γt are unit and time fixed effects, and {δj} represent average treatment effects at

different leads and lags. Typically, the covariates are assumed to be strictly exogenous, i.e.,

they are uncorrelated with the error term across all time periods, so that current, past, and

future values of the covariates do not respond to shocks in the outcome equation. This

framework is attractive for its intuitive interpretation and straightforward implementation.

See also recent reviews by Freyaldenhoven, Hansen, Pérez, and Shapiro (2021) and Miller

(2023).

Despite its widespread use, the standard two-way fixed effects (TWFE) estimator relies

on strong assumptions that may not hold in empirical applications. In particular, by omit-

ting lagged outcomes, it implicitly assumes that unit and time fixed effects are sufficient to

eliminate all serial dependence in the residual. This assumption is often violated in settings

where economic outcomes — such as consumption, employment, earnings, and investment

— exhibit persistence due to habit formation, adjustment costs, or other dynamic mech-

anisms. When lagged outcomes are correlated with treatment timing, TWFE estimators

conflate causal effects with residual dynamics. This can induce spurious pre-trends, bias

post-treatment estimates, and lead to invalid inference, including misleading placebo tests

and confidence intervals. Although dynamic panel methods are well developed, they remain

underutilized in applied event study analyses.
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Second, and of equal importance, is the potential heterogeneity in treatment effects.

While the average treatment effect summarizes the mean response, distributional and wel-

fare analyses often depend on the full distribution of treatment effects across units. For

example, targeted subsidies may yield disproportionate benefits for specific demographic

groups. Assuming homogeneous effects can mask such variation and lead to suboptimal or

inequitable policy recommendations. Furthermore, treatment effects may vary systematically

with observed covariates — such as pre-treatment outcomes or demographic characteristics

— as well as unobserved unit-level attributes, including preferences or ability. Recognizing

and modeling such heterogeneity is therefore essential for designing targeted interventions

and for evaluating their distributional consequences.

In this paper, we introduce a semiparametric model for time-varying heterogeneous treat-

ment effects (TV-HTE) that simultaneously tackles outcome dynamics and cross-unit het-

erogeneity. For example, we can model

Yit = ρY Yi,t−1 + αi + γt +
J∑

j=0

Dj
itδij +X ′

itβ + Uit, Uit
iid∼ (0, σ2

U),

where ρY captures outcome persistence, and δij is the unit- and event-time-specific treatment

effect. To reduce dimensionality, we can impose an AR(p) process on the treatment effects.

For p = 1, we can write

δij = ρδδi,j−1 + εij, εij
iid∼ (0, σ2

ε), j ≥ 1,

with δi0 unrestricted. This AR(1) specification parsimoniously captures persistence or decay

in heterogeneous responses while allowing each unit to have a distinct initial effect δi0.

Interpreting λi = (αi, δi0)
′ as correlated random coefficients, we permit their joint distri-

bution to depend flexibly on the initial outcomes Yi0, exogenous covariates Xi, and the treat-

ment timing. Under the assumption of conditional strict exogeneity of treatment—that Uit

is independent of treatment conditional on these covariates—and a mild non-vanishing char-

acteristic function condition, we achieve nonparametric identification of both the common

parameters θ = (ρY , ρδ, β, σ
2
U , σ

2
ε)

′ and the conditional distribution of the random coefficients

λi.

Building on the identification result and further assuming Gaussianity on Uit and εij, we

develop a two-step estimation procedure that is straightforward to implement. In the first
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step, we estimate the common parameters θ by quasi-maximum likelihood (QMLE). To do

so, we assume a Gaussian form for the conditional distribution of the random coefficients λi,

integrate them out of the joint likelihood, and obtain θ̂ by maximizing the resulting marginal

likelihood. We show that even when this Gaussian assumption is misspecified, the QMLE

remains consistent and asymptotically normal.

In the second step, we recover unit-specific estimates of λi via empirical Bayes. Let λ̂i

denote the MLE estimate of λi. One can show that λ̂i = λi + Vi, where Vi has mean zero

and a variance matrix estimated from the first-step output. Tweedie’s formula then yields

the posterior mean that combines this noisy MLE estimate with a correction term that

depends on the derivative of the marginal density of the sufficient statistics. Intuitively, this

correction shrinks the MLE estimate toward regions of higher density in the data, effectively

combining information across units to improve the estimation accuracy.

By focusing on the derivative of the observed marginal density of the sufficient statistics

p(λ̂i | Yi0, Xi), we sidestep the challenging deconvolution problem to recover the underly-

ing distribution of π(λ | Y0, X). The marginal density of the sufficient statistics can be

estimated either parametrically or nonparametrically, and the resulting empirical Bayes es-

timator shrinks noisy unit-level estimates toward a data-driven prior and achieves ratio

optimality, that is, its compound risk converges to the oracle risk that would be attained

by an infeasible estimator with perfect knowledge of the true conditional random coefficient

distribution.

This TV-HTE framework provides several advantages compared to the standard event

study methods. Incorporating the lagged dependent variable eliminates omitted-variable

bias due to persistence. Modeling heterogeneity through a time-series process captures the

dynamics in treatment effects without high-dimensional estimation. The empirical Bayes

step sharpens unit-level estimates in short panels, overcoming the many-means problem.

In addition to the above setup, our framework extends naturally to discrete or continuous

treatments and to staggered adoption designs. We also allow for both strictly exogenous

covariates, whose coefficients may be unit-specific or common, and predetermined covariates

with common effects. The dynamics for Yit and δij can be generalized to AR(p) processes,

e.g., AR(2) to capture oscillatory patterns, and the error structure can be generalized to

allow for cross-sectional heteroskedasticity σ2
U,i or MA(q) process.

Moreover, our framework also sheds light on common assumptions in event study. For

example, by examining the estimated means of the event-time coefficients in pre-treatment
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periods (j < 0), we can formally test the no anticipation assumption. Also, by comparing

these means across cohorts defined by treatment timing, we can assess the homogeneity

of treatment effects. In addition, our dynamic panel structure with separate persistence

parameters for the outcome ρY and the treatment effects ρδ allows us to evaluate state

dependence in both the underlying process and the policy response.

We assess the performance of our TV-HTE estimator through extensive Monte Carlo

experiments and an empirical example on county-level unemployment during the 2008 Great

Recession. In the Monte Carlo, our method nearly replicates the infeasible oracle in re-

covering the distribution of unit-specific effects under Gaussian, bimodal, and heavy-tailed

distributions, and across dynamic response profiles ranging from monotonic decay to oscil-

latory paths. Our tests maintain correct size under the null and exhibit high power. In

the empirical example, we find that the heterogeneous treatment effects are markedly non-

Gaussian and irregularly distributed: county-level unemployment spikes range from roughly

0.5 to over 7 percentage points, far surpassing the average TWFE estimate, and dynamic

trajectories differ across counties as well. Formal tests reject the random effects specifica-

tion, the null of no correlation between heterogeneous effects and baseline heterogeneity,

and the null of no state dependence, instead supporting our correlated random coefficients,

time-varying analysis.

Related literature. Since the pioneering work by Ashenfelter (1978) on estimating the

effects of training programs on earnings using a two-way fixed-effects model, empirical re-

searchers have widely adopted panel data event study designs to quantify causal effects in

economics. However, a growing literature recognizes that homogeneous effect assumptions

can yield misleading estimates in staggered adoption settings, and recent work has fallen into

three methodological strands. First, robust estimators for the mean treatment effect, such

as de Chaisemartin and D’Haultfœuille (2023) and Borusyak, Jaravel, and Spiess (2024),

rely on carefully constructed two-by-two comparisons or imputation-based counterfactuals

to eliminate bias. Second, group-level approaches, such as Callaway and Sant’Anna (2021),

Goodman-Bacon (2021), and de Chaisemartin and D’Haultfœuille (2023), estimate cohort-

and period-specific treatment effects and aggregate them with convex weights or interaction

weighted regressions to ensure no negative contributions. Finally, Arkhangelsky, Imbens, Lei,

and Luo (2024) consider individual-level treatment effects via finite-mixture and latent-type

models. In this paper, we also examine individual-level treatment effects and incorporate
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an empirical Bayes approach to refine these estimates, thereby improving precision while

flexibly accommodating time-varying heterogeneity. Our analysis also helps assess common

assumptions underlying event study designs, such as those in Sun and Abraham (2021).

To accommodate outcome persistence and mitigate the Nickell bias in short panels, we

draw on dynamic panel methods. Anderson and Hsiao (1982) propose first-differencing and

using deeper lags as instruments to eliminate fixed effects. Arellano and Bond (1991) gen-

eralize this with a GMM estimator that exploits all available lagged levels, substantially

improving efficiency in panels with small T . Blundell and Bond (1998)’s system GMM fur-

ther addresses weak-instrument concerns when the autoregressive coefficient is high. Arellano

and Bonhomme (2012) show that, under mild serial-correlation restrictions, one can identify

moments—and even the full distribution—of random coefficients in a short panel. Alvarez

and Arellano (2022) develop robust QMLE for dynamic panels that remain valid under het-

eroskedasticity and arbitrary serial correlation, demonstrating that random-effects likelihood

methods can outperform GMM when distributional assumptions approximately hold. In this

paper, we similarly estimate the common autoregressive parameters via QMLE in the first

step, and the time dynamics of the heterogeneous treatment effects are further modeled by

time-series processes to reduce dimensionality.

Our second step employs an empirical Bayes estimator to recover unit-specific treatment

trajectories. Robbins (1951) introduces empirical Bayes as a compound decision problem,

yielding shrinkage rules that minimize average risk without knowing the prior distribution.

With exponential family likelihood, Tweedie’s formula links posterior means to the deriva-

tives of the marginal density of sufficient statistics, enabling nonparametric π-modeling em-

pirical Bayes (Efron, 2011). Brown and Greenshtein (2009) and Jiang and Zhang (2009)

establish that maximum-likelihood empirical Bayes estimators for normal-means problems

achieve asymptotic minimaxity or ratio optimality. Gu and Koenker (2017) and Liu, Moon,

and Schorfheide (2020) show substantial gains in estimation and forecasting accuracy by

efficiently combining information across cross-sectional units. In this paper, we employ both

parametric and nonparametric empirical Bayes to obtain posterior mean estimates of unit-

specific treatment trajectories, optimally balancing individual signal and noise, and establish

their ratio optimality.

The remainder of this paper is organized as follows. Section 2 introduces the model

and discusses the identification of time-varying heterogeneous treatment effects. Section 3

presents our two-step estimation method and establishes its asymptotic properties, including
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ratio optimality. Section 4 extends our estimator to various contexts and discusses tests for

common event study assumptions. Section 5 conducts Monte Carlo experiments to examine

the finite-sample properties of our estimators. Section 6 employs our panel data estimator

to analyze how the Great Recession in 2008 affected local labor markets. Finally, Section 7

concludes. Appendix A provides the proofs for all propositions and theorems, and the online

appendix contains additional tables and figures.

2 Simple model and identification

2.1 Importance of lagged dependent variables

Economic series tend to be persistent over time. For example, consumption adjusts gradually

as habits evolve, and wages move slowly amid contract and adjustment frictions. When such

built-in persistence coincides with event timing, the dummy variables in a TWFE regression

absorb not only the true effect of the intervention but also the persistence present in the

data. As a result, what appear as treatment effects may also reflect the persistence of

past outcomes, giving rise to spurious pre-trends, distorted post-treatment estimates, and

misleading inference in placebo tests and confidence intervals.

A simple, yet revealing, illustration shows why excluding lagged dependent variables

from an event study regression generates omitted variable bias in the estimated treatment

effect path. Consider a panel with five periods (t = 0, 1, 2, 3, 4) and a common treatment

occurring at t = 2, so that Dj
it = 1{t − j = 2}. Suppose the true DGP is an AR(1) model

with persistence ρY and a treatment effect path (δ0, δ1, δ2),

Yit = ρY Yi,t−1 +
2∑

j=0

Dj
itδj + Uit,

and let E[Yi0] = 0 for simplicity. In contrast, the naive event study regression omits dynamics

and simply fits

Yit =
2∑

j=0

Dj
itδ̃j + Ũit.

Because the true outcomes are serially correlated, each indicator Dj
it is correlated with the
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Figure 1: Omitted variable bias - toy example

Notes: The black dashed line shows the true treatment effect path (δ0, δ1, δ2) = (1, 1.2, 0.5), while the blue

solid line shows the estimated treatment effect path of {δ̃j} from a naive event study regression without
lagged dependent variables. The blue band shows the 95% confidence interval.

omitted lag Yi,t−1, producing bias in δ̃j. One can show analytically that

Bias(δ̃j) = ρYE
[
Dj

itYi,t−1

]
= ρYE[Yi,j+1] =


0, j = 0,

ρY δ0, j = 1,

ρY δ1 + ρ2Y δ0, j = 2.

Thus, even if the true effect at j = 0 is identified without bias, biases accumulate at longer

horizons, distorting the entire treatment path.

Figure 1 contrasts the true effects (black dashed) with the biased estimates (blue solid) for

ρY = 0.8 and (δ0, δ1, δ2) = (1, 1.2, 0.5) in a simulated sample of N = 100, and their differences

are statistically significant. This toy example highlights the necessity of explicitly modeling

lagged dynamics in event study designs. By incorporating Yi,t−1, researchers can control for

outcome persistence and recover unbiased estimates of the time-varying treatment effects.

2.2 Dynamic panel with time-varying het. treatment effects

We now introduce a simple dynamic panel framework that accommodates both persistence

in the outcome and heterogeneous treatment effects across units and event time horizons.

To highlight the main intuition, we focus on a simple model that drops time fixed effects

and other covariates, and adopts a common treatment timing in this section. More general

cases are discussed in subsequent sections.

8



Let i = 1, . . . , N index cross-sectional units and t = 0, . . . , T denote time periods. We

consider a large N , fixed T setup, which is natural for many event study applications where

the number of treated and control units is large but the available pre- and post-treatment

windows are of limited length. For simplicity, each unit undergoes a single treatment at a

common period t0. We define the event time indicator Dj
it = 1{t− j = t0}, j = 0, 1, . . . , J,

so that Dj
it = 1 when unit i is in the jth period after treatment. Our baseline outcome

equation augments a standard dynamic panel with these event time dummies

Yit = ρY Yi,t−1 + αi +
J∑

j=0

Dj
itδij + Uit, Uit

iid∼ (0, σ2
U). (1)

Here, ρY captures first-order persistence in the outcome, while the unit-specific intercept αi

controls for time-invariant heterogeneity. The term δij is the treatment effect for unit i at

event time j, allowing each unit to respond differently and dynamically to the intervention.

Because freely estimating the full matrix {δij} would involve (J + 1) × N parameters,

we can incorporate a simple time series structure on the heterogeneous effects to reduce the

dimensionality.1 For example, for j ≥ 1 we assume an AR(1) process

δij = ρδδi,j−1 + εij, εij
iid∼ (0, σ2

ε). (2)

The persistence parameter ρδ governs the decay or oscillation of treatment effects over suc-

cessive periods, while the variance σ2
ε captures unit-specific shocks to the response path.

Only the initial effect δi0 remains freely heterogeneous, enabling each unit to have its own

starting point for the dynamic treatment response.

To capture potential correlations between initial outcomes, individual heterogeneity, and

initial treatment effects, we let

λi = (αi, δi0)
′, λi | Yi0 ∼ π(λi | Yi0),

where π(λ | Y0) is an unrestricted conditional density. This correlated random coefficients

specification allows αi and δi0 to depend flexibly on the initial outcome Yi0 (and, in extensions,

1The assumed time series structure for δij is testable in the data. For example, one can obtain preliminary
estimates of the individual effect trajectories by orthogonal forward differencing of Arellano and Bover (1995),
and then subject these series to standard time-series diagnostics to assess whether an AR(p) process provides
an adequate fit.
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on additional exogenous covariates). Moreover, by allowing for correlation between the

baseline heterogeneity αi and the initial treatment effects δi0, the framework can capture

meaningful heterogeneity in treatment effects that standard event study methods might

overlook.

Collecting the parameters into the vector θ = (ρY , ρδ, σ
2
U , σ

2
ε)

′ with true value θ0, we aim

to recover θ, the conditional distribution of λi, and posterior mean estimates of λi.

2.3 Identification

We now formalize the conditions under which both the common parameters θ and the con-

ditional distribution of the unit-specific coefficients λi are nonparametrically identified.

Assumption 2.1 (Model) Consider the simple model given by (1) and (2) with common

treatment period t0.

(a) (Yi0, λi) are i.i.d. across i.

(b) Uit ⊥ (Yi,0:t−1, λi), εij ⊥ (δi,1:j−1, Yi0, λi), and Uit ⊥ εij, for all i, t, and j.

Condition (b) implies that the combined error terms Ǔi,1:T (ρδ) in (3) and hence the noise

Vi(ρδ) in (5) below are independent of λi conditional on Yi0, a key requirement for the

deconvolution exercise.

Remark 2.1 (Conditional exogeneity in treatment) Under a common treatment tim-

ing, our baseline specification implicitly imposes conditional exogeneity of treatment: the

innovation Uit is assumed independent of the event time indicators Dj
it (or, in a more general

case with different treatment timings, independent once we condition on observed covari-

ates). This condition ensures that the design matrix Wi(ρδ) for heterogeneous coefficients in

(4) below is exogenous, so that the deconvolution step yields valid identification results.

It is useful to contrast this with the classic parallel trends assumption, which typically

requires no outcome persistence (ρY = 0) and E[U (0)
it | {Dj

ij}] = 0, where U
(0)
it denotes the

potential error under no treatment. Here we relax the parallel trends assumption by allowing

ρY ̸= 0.2 Although our conditional exogeneity assumption is stronger than standard parallel

2Under our model, the transformed outcome Yit−ρY Yi,t−1 satisfies a conditional parallel trend assumption
once we control for exogenous covariates, as discussed in Wooldridge (2021).
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trends in terms of its assumption on the error terms, it affords us the flexibility to estimate

richer heterogeneous treatment effect trajectories.

Moreover, by framing (αi, δi0) as correlated random coefficients, we naturally accommo-

date selection on unobservables, where treatment timing can correlate with observed covari-

ates, latent heterogeneity including heterogeneous treatment effects, as well as time fixed

effects in the general model.

Combining the simple dynamic panel data model (1) and the AR(1) process (2), we

obtain

Yit − ρY Yi,t−1 = αi +

(
J∑

j=0

ρjδD
j
it

)
δi0 +

(
Uit +

J∑
j=0

j∑
k=1

ρj−k
δ Dj

itεik

)
︸ ︷︷ ︸

≡Ǔit(ρδ)

. (3)

where Ǔi,1:T (ρδ) is a mean-zero vector with covariance matrix ΣǓ(θ). Next, define the T × 2

design matrix Wi(ρδ) by

Wi(ρδ) =


1
∑J

j=0 ρ
j
δD

j
i1

1
∑J

j=0 ρ
j
δD

j
i2

...
...

1
∑J

j=0 ρ
j
δD

j
iT

 , (4)

and let Wit(ρδ) be its t-th row.3 The model can then be written compactly as

Yit − ρY Yi,t−1 = Wit(ρδ)
′λi + Ǔit(ρδ).

Given ρ = (ρδ, ρY )
′, the OLS/MLE estimator of the latent coefficient vector λi is

λ̂i(ρ) = Wi(ρδ)
+ (Yi,1:T − ρY Yi,0:T−1) = λi + Vi(ρδ), (5)

where Wi(ρδ)
+ = (Wi(ρδ)

′Wi(ρδ))
−1Wi(ρδ)

′ and Vi(ρδ) = Wi(ρδ)
+Ǔi,1:T (ρδ), which is mean-

zero and has covariance matrix ΣV,i(θ) = Wi(ρδ)
+ΣǓ(θ)[Wi(ρδ)

+]′. Thus, λ̂i(ρ) is a sufficient

statistic for λi with noise Vi(ρδ).

3In our simple setup with common treatment timing t0, the design matrix Wi(ρδ) is deterministic and
homogeneous across all units, so there is no need to condition on it in the assumptions and derivations,
thereby simplifying the exposition.
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Assumption 2.2 (Distributions)

(a) The characteristic functions of λi | Yi0, Uit, and εij are non-vanishing almost every-

where.

(b) The characteristic functions of Uit and εij are twice differentiable.

(c) Var(δi0) > 0 and Var(Yi0) > 0.

Conditions (a) and (b) guarantee that the convolution in (5) can be inverted via characteristic

function methods, thereby recovering the conditional distribution of λi | Yi0. Condition (c)

ensures cross-sectional variation in both the initial treatment effects and initial outcomes,

guaranteeing that the moment conditions for identifying ρδ and ρY are non-degenerate.

Assumption 2.3 (Rank condition) t0 ≥ 3, and T − t0 ≥ J ≥ 1.

Since Ǔi,1:T (ρδ) is an MA(J) process in the error terms {Uit, εij}, we require sufficient pre-

treatment variation to disentangle these shocks from the treatment effect dynamics. In the

simple common timing design, this amounts to imposing t0 ≥ 3, which helps satisfy the rank

conditions in Arellano and Bonhomme (2012). For general cases with different treatment

timings and additional covariates, we can extend to a more general rank condition on the

expanded design matrix. T − t0 ≥ J ≥ 1 ensure that there are enough post-treatment

observations to identify the full sequence of dynamic treatment effects.

Theorem 2.1 (Nonparametric identification) Under Assumptions 2.1–2.3, the common

parameters θ and the conditional density π(λi | Yi0) are identified.

First, we can identify the autoregressive parameters ρ from moment conditions. Second,

the identification of the conditional density π(λi | Yi0) relies on the sufficient statistics

representation (5). Taking characteristic functions on both sides transforms the convolution

in the time domain into a product in the frequency domain, so one obtains on the right

hand side a product of the characteristic functions of the latent coefficients λi | Yi0 and

the noise term Vi(ρ). Under the non-vanishing characteristic functions, this product can be

deconvolved to recover both distributions. Our proof builds on the deconvolution argument

of Arellano and Bonhomme (2012) and Liu (2023) for correlated random coefficients panels

and extends it to the dynamic event study framework.
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Algorithm 1 Semiparametric TV-HTE estimator

Input: Panel data {Yit}t=0,...,T
i=1,...,N , treatment timing t0, horizon J .

Output: Estimates of common parameters θ̂ and unit-level parameters {λ̃i}.

Step 1: QMLE for common parameters. Maximize the marginal quasi-log-likelihood

ℓN(θ, b0, b1,Σλ) =
N∑
i=1

log ϕ (Yi,1:T ; µi(θ, b0, b1), Ωi(θ,Σλ)) ,

where µi(·) and Ωi(·) are given in (6), to obtain
(
θ̂, b̂0, b̂1, Σ̂λ

)
.

Step 2: Empirical Bayes for unit-specific parameters

1. Build T×2 matrix Ŵi = Wi(ρ̂δ) with rows
[
1,
∑J

j=0 ρ̂
j
δD

j
it

]
, and Ŵ+

i =
(
Ŵ ′

iŴi

)−1

Ŵ ′
i .

2. Compute OLS/MLE estimate and noise covariance

λ̂i = Ŵ+
i (yi,1:T − ρ̂Y yi,0:T−1) , Σ̂V,i = Ŵ+

i ΣǓ(θ̂)Ŵ
+′
i .

3. Estimate marginal density of the sufficient statistics p(λ̂i | Yi0) either parametrically

or nonparametrically.

4. Apply Tweedie’s formula:

λ̃i = λ̂i + Σ̂V,i∇λ̂i
log p̂

(
λ̂i | yi0

)
.

3 Estimation and asymptotics

3.1 Two-step estimation

Building on the identification results and further assuming Gaussianity on Uit and εij, we

implement a simple two-step estimator that first estimates the common parameter and then

recovers the unit-specific parameters, as summarized in Algorithm 1.

In the first step, we estimate the common parameters θ by QMLE, treating the latent

coefficients λi | Yi0 as if they followed a Gaussian regression model

λi | Yi0 ∼ N (b0 + b1Yi0, Σλ) .
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Even though this correlated random coefficients distribution may be misspecified, maximiz-

ing the resulting marginal likelihood over θ and the nuisance parameters (b0, b1,Σλ) yields

consistent and asymptotically normal estimates for θ. In practice, the Gaussian prior and

likelihood imply conjugacy, yielding a closed-form marginal likelihood

Yi,1:T ∼ N (µi(θ, b0, b1),Ωi(θ,Σλ)) ,

where

µi(θ, b0, b1) = A(ρY )Yi0 + W̃ (ρY , ρδ) (b0 + b1Yi0) , (6)

Ωi(θ,Σλ) = B(ρY )ΣǓ(θ)B(ρY )
′ + W̃ (ρY , ρδ)ΣλW̃ (ρY , ρδ)

′,

where A(ρY ) = (ρY , ρ
2
Y , . . . , ρ

T
Y )

′ captures initial condition propagation, B(ρY ) is the T × T

lower triangular matrix with (s, t)-th element ρs−t
Y for s ≥ t (zero otherwise), and W̃ (ρY , ρδ) =

B(ρY )W (ρδ) transforms the treatment design matrix. We can efficiently maximize this

marginal likelihood using standard numerical optimization routines.

In the second step, the sufficient statistic λ̂i(ρ) has been derived in Section 2.3: see

equation (5). For the empirical Bayes estimator, we exploit Tweedie’s formula (Robbins,

1951; Efron, 2011) to compute the posterior mean of each unit’s random coefficients λi,

E [λi | Yi,0:T , t0, ρ, p] = λ̂i(ρ) + ΣV,i(θ)
∂

∂λ̂i(ρ)
log p

(
λ̂i(ρ) | Yi0

)
. (7)

The first term is the OLS/MLE estimate and the sufficient statistic λ̂i(ρ), while the second

term is a Bayes correction that depends on the derivative of the marginal density of the

sufficient statistics λ̂i(ρ) | Yi0. The correction term adapts to the local shape of the marginal

density of λ̂i(ρ) | Yi0: a positive derivative indicates the estimate falls below the mode

so we shrink upward, while a negative derivative indicates it lies above the mode so we

shrink downward. Moreover, steeper slopes, i.e., higher density concentration, yield larger

corrections, whereas flatter regions induce milder shrinkage.

With fixed T in event studies, the unit-specific parameters λi cannot be consistently es-

timated; instead, the empirical Bayes estimator helps efficiently combine information across

all units to shrink and refine these estimates, thereby reducing the overall compound risk.

Crucially, Tweedie’s formula circumvents the challenge to deconvolve the latent coefficient
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density π(λi | Yi0); one only needs to estimate the marginal density of the observable quan-

tities
(
λ̂i(ρ), Yi0

)
.4 In practice, this marginal can be fit parametrically, such as plugging in

the Gaussian form implied by the QMLE, or nonparametrically via kernel or mixture meth-

ods. The former is easier to implement, while the latter helps reveal richer heterogeneity

patterns. The resulting empirical Bayes estimator shrinks the noisy OLS/MLE λ̂i(ρ) toward

a data-driven prior and attains ratio optimality, i.e., its compound risk is asymptotically

equivalent to the oracle risk, where one knows the true conditional distribution of λi.

3.2 Asymptotics for QMLE

We now establish that the QMLE in the first step is consistent and asymptotically normal.

Assumption 3.1 (Estimation)

(a) Uit and εij follow Gaussian distributions with σ2
U , σ

2
ε > 0.

(b) (λi, Yi0) have finite fourth moment.

This Gaussianity condition (a) is imposed for the two-step estimator, not for identification.

Nonparametric identification in Theorem 2.1 only requires a non-vanishing characteristic

function of the composite noise, regardless of its exact distribution. In more general speci-

fications with additional covariates, we need only conditional Gaussianity of {Uit, εij} given

those covariates. Furthermore, if one forgoes the AR(p) dimension reduction and instead

directly estimates the full vector of {δij}, the normality of εij can also be dispensed with.

However, when employing the AR-based reduction, where Vi(ρ) is a linear combination of Uit

and εij, we require that this composite noise lie in an exponential family, such as Gaussian,

to obtain the Tweedie’s formula for the empirical Bayes estimator.

Let η = (θ′, b′0, b
′
1, vech(Σλ)

′)′ collect both the common parameters and the Gaussian

prior parameters, and η0 be the pseudo-true value of η. For the prior parameters, b0,0 and

b1,0 are those that minimize the Kullback-Leibler distance between the true conditional dis-

tribution of λi | Yi0 and the working Gaussian regression. Equivalently, b1,0 is the best linear

predictor coefficient of λi on Yi0 and b0,0 = E[λi]− b1,0E[Yi0], while Σλ,0 is the corresponding

residual covariance.

4Since the conditional and joint log densities differ only by a constant that drops out under differentiation,

we can work with log p
(
λ̂i, Yi0

)
instead of log p

(
λ̂i | Yi0

)
in practice.
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Theorem 3.1 (QMLE) Under Assumptions 2.1-2.3 and 3.1,

η̂
p−→ η0,

√
N (η̂ − η0)

d−→ N
(
0, H(η0)

−1G(η0)H(η0)
−1
)
,

where

H(η0) = −E
[
∇2

ηℓi(η0)
]
, G(η0) = E [∇ηℓi(η0)∇ηℓi(η0)

′] ,

and ℓi is the marginal quasi-log-likelihood of Yi,1:T . The asymptotic variance of θ̂ is obtained

by taking the corresponding sub-block of this sandwich matrix.

The intuition is in line with standard M-estimation arguments applied to a pseudo-likelihood:

the identification and moment conditions ensure a unique maximizer and uniform conver-

gence of the score, while smoothness guarantees a valid Taylor expansion of the log-likelihood.

The resulting sandwich-form variance reflects potential misspecification of the prior. Note

that the there is no Nickell bias for the marginal likelihood after integrating out λi, although

there is for the conditional likelihood: see also the robust QMLE discussion in Alvarez and

Arellano (2022).

3.3 Ratio optimality for empirical Bayes

In this subsection, we show that the empirical Bayes estimator in the second step achieves

oracle risk performance.

Define the risk for any estimator λ̃1:N and the oracle risk as follows:

RN(λ̃1:N ; θ0, π0) = Eθ0,π0

[
N∑
i=1

∥λ̃i − λi∥2
]
, Roracle

N (θ0, π0) = Eθ0,π0

[
N∑
i=1

Varθ0,π0(λi | Yi,0:T )

]
,

where the subscripts (θ0, π0) indicate that the expectation and variance are under the true

data generating law Pθ0,π0 . θ0 and π0 are unknown to the econometrician but fixed in the

DGP. Let the leave-one-out kernel estimator be

p̂(−i)(λ̂i(ρ), yi0) =
1

N − 1

∑
j ̸=i

1

Bd
N

ϕ
(

λ̂j(ρ)−λ̂i(ρ)

BN

)
ϕ
(

Yj0−yi0
BN

)
,
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with d = dim(λ̂) + 1, and the empirical Bayes estimator for λi be

λ̃i =

[
λ̂i(ρ̂) +

(
Σ̂V,i +B2

NIdim(λ̂i)

) ∂

∂λ̂i(ρ̂)
log p̂(−i)

(
λ̂i(ρ̂) | Yi0

)]
CN

, (8)

where Σ̂V,i is given in Algorithm 1, and [·]CN
means truncate the vector inside to lie within

the Euclidean ball of radius CN .

We adopt Assumptions 3.2–3.6 of Liu, Moon, and Schorfheide (2020), restated as As-

sumptions A.1–A.5 in Appendix A.3. First, exponential tails for (λi, Yi0) ensure that the

probability mass trimmed away at ∥λi∥ > CN vanishes as N → ∞. Second, trimming

and bandwidth rates (CN , C
′
N , BN) balance kernel bias and variance. Third, smoothness of

π(Yi0 | λi) prevents sharp spikes in the distribution of Yi0. Together, these conditions ensure

that the leave-one-out density p̂(−i) is consistent. Fourth, posterior-mean truncation ensures

that the empirical Bayes procedure remains stable by preventing outlier units with extreme

estimates from dominating the overall performance, thereby maintaining uniform control

over the risk across all possible priors. Finally,
√
N -consistency of the common parameters

θ̂ follows from the QMLE result in Theorem 3.1.

Theorem 3.2 (Ratio optimality) Let θ0 denote the unknown true parameter, treated as

fixed in the DGP. Under Assumptions 2.1–2.3, 3.1, and A.1–A.5, the empirical Bayes esti-

mator λ̃1:N in (8) achieves ε0-ratio optimality uniformly over π0 ∈ Π: for any ε0 > 0,

lim sup
N→∞

sup
π0∈Π

RN(λ̃1:N ; θ0, π0)−Roracle
N (θ0, π0)

NEθ0,π0 [Varθ0,π0(λi | Yi,0:T )] +N ε0
≤ 0.

In a decision theoretic framework for compound risk, our event study estimator attains ratio

optimality, meaning that its overall risk converges to the infeasible oracle benchmark up to

vanishing terms. In other words, the mean squared error of our empirical Bayes shrinkage

estimator is asymptotically equivalent to the minimum possible risk one would achieve if the

true distribution of λi | Yi0 were known. Our analysis builds on the foundational work of

Brown and Greenshtein (2009) on compound decision problems, the refinements by Jiang

and Zhang (2009), and the recent dynamic panel extension of Liu, Moon, and Schorfheide

(2020).
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4 Extensions and tests

4.1 Extensions

Beyond the baseline specification in (1) and (2), our proposed method accommodates various

extensions to address richer policy questions and realistic data features. First, one can gen-

eralize the treatment indicator Dj
it to discrete or continuous dosages Zj

it, accommodate stag-

gered adoption designs by allowing treatment timing to vary across units, incorporate time

fixed effects γt further controls for common shocks, and estimate δij for j ∈ {−L, . . . ,−1}
to partially check for the no anticipation assumption.

Second, additional covariates Xit can be woven into both the QMLE and empirical Bayes

steps. For strictly exogenous controls XO
it , their coefficients can be either common or unit-

specific, whereas for predetermined covariates XP
it , they can only have common coefficients

to ensure identification. These covariate extensions allow researchers to flexibly adjust for

observed confounders while still exploiting the shrinkage benefits of empirical Bayes.

Third, the dynamic structure itself can be enriched. Both the outcome process Yit and the

treatment effect sequence δij may follow AR(p) dynamics; in particular, AR(2) specifications

capture potential non-monotonic or oscillatory responses that simple AR(1) models miss.

Moreover, the error term Uit can be generalized to admit cross-sectional heteroskedasticity

σ2
U,i (see for example, Chen (2022) and Liu (2023)) or temporal dependence via MA(q)

processes, improving finite sample inference under complex serial correlation patterns.

Finally, our empirical Bayes prior can conditional on various observables: one can consider

π(λi | Ci), where conditioning variables Ci can include the initial outcome Yi0, treatment

timing and size Dj
it or Z

j
it, whole time series paths of strictly exogenous covariates XO

i,0:T , and

initial values of predetermined covariates XP
i0. Under a conditional strict exogeneity assump-

tion, namely, the error terms Uit is independent of the treatment conditional on (XO
i,0:T , X

P
i0),

these extensions preserve identification and capture richer sources of heterogeneity across

units.

4.2 Tests

Our analysis not only delivers flexible estimates of treatment effect heterogeneity but also

provides a unified toolkit for formally testing model specifications and key event study as-

sumptions.
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In terms of model specification, first, we can examine whether we have random coeffi-

cients, where λi is uncorrelated with Yi0, against correlated random coefficients (H0 : b1 = 0).5

We can test whether there is no correlation between heterogeneous effects and individual het-

erogeneity, where λi is uncorrelated with Yi0 and δij is uncorrelated with αi conditional on

Yi0 (H0 : b1 = 0, Σλ,12 = 0). Third, we can check the absence of state dependence in δij

(H0 : ρδ1 = ρδ2 = 0). See Table 2 for the size and power of these tests in our simulation

study, and Table 4 for their performance in the county-level recession and unemployment

application.

In terms of common event study assumptions, first, as discussed in Remark 2.1, the

parallel trends assumption, such as Assumption 1 in Sun and Abraham (2021), amounts

to zero persistence in Yit absent treatment (H0 : ρY = 0). Second, the no anticipation

assumption, such as Assumption 2 in Sun and Abraham (2021), requires that E[δij] = 0

for j < 0, which can be tested by verifying that pre-treatment event time coefficients have

zero mean. Third, the homogeneous treatment effects assumption, such as Assumption 3

in Sun and Abraham (2021), implies identical mean treatment paths across cohorts defined

by treatment timing, which can be assessed by comparing the estimated means of δij across

these cohorts.

5 Monte Carlo simulations

5.1 Alternative estimators and DGPs

Alternative estimators. In our simulation study, we evaluate two broad groups of es-

timators for time-varying treatment effects in event studies: the homogeneous treatment

effect estimators and the heterogeneous treatment effect ones. For simplicity, we focus below

on the basic setup of Section 2.2 without time fixed effects and additional covariates, and

extensions to the generalized model in Section 4.1 can be carried out in a similar manner.

The first group comprises the traditional TWFE without any lagged outcome and an

augmented version with an AR(1) term. The baseline TWFE regresses the observed outcome

5Uncorrelation is a necessary but not sufficient condition for independence, making this a more conser-
vative test.
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Yit on event time dummies and unit fixed effects,

Yit =
J∑

j=−L

Dj
itδj + αi + Uit,

normalizing the pre-treatment period by setting δ−1 = 0. While straightforward, omitting

dynamics can lead to omitted variable bias when outcomes are serially correlated. To miti-

gate this bias, we introduce an augmented TWFE+AR(1) estimator, which includes a lagged

outcome Yi,t−1 as an additional regressor,

Yit = ρY Yi,t−1 +
J∑

j=−L

Dj
itδj + αi + Uit, normalizing δ−1 = 0,

while still consider a common effect δj across units.

The second class of estimators allows for unit-specific dynamic responses as in (1). We

consider the following four heterogeneous treatment effect estimators, which differ in how

they recover the marginal density of the sufficient statistics p(λ̂ | Y0) in Tweedie’s formula

(7). The oracle estimator knows the true distribution and the true common parameters,

and thus attains the infeasible optimum to which we benchmark our feasible estimator. The

parametric estimator adopts a parametric form of the distribution, typically Gaussian, which

is in line with the QMLE and easy to implement. The nonparametric estimator models the

distribution via kernel or mixture and offers flexibility to uncover complex heterogeneity

patterns at the cost of longer computation time and higher variance.6 Our main focus is on

the parametric and nonparametric approaches.

DGPs. We simulate panel data according to a dynamic event study model in (1), and the

treatment effect sequence {δij}mj=0 follows an AR(p) process,

δij =

p∑
k=1

ρδpδi,j−p + ϵij, ϵij
iid∼ N(0, σ2

ϵ ),

for j = p, . . . , J , with initial draws δi0.

In our baseline design, we set the cross-sectional sample size to N = 1000, the time series

6For the kernel estimator, we use a Gaussian kernel with bandwidth chosen by Silverman’s rule of thumb,
which performs well in our simulations and empirical application, although more advanced bandwidth selec-
tion methods could further improve its estimation accuracy.
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dimension to T = 10, the treatment onset to t0 = 5, and the maximum event horizon to

J = 5. The common parameters are ρY = 0.8, σ2
U = 1/T , and σ2

ϵ = 1/T .

For the distribution of unit-specific parameters π(λ | Y 0), we take into account the

following four aspects that capture different heterogeneity and state dependence patterns.

First, we explore both normal and non-normal distributions. Second, we examine both a

random coefficients (RC) setup with λi ⊥ Yi0 and a correlated random coefficients (CRC)

setup with λi ̸⊥ Yi0. Third, we investigate scenarios where αi and δi are either independent

or correlated conditional on Yi0. Finally, we consider both AR(1) and AR(2) for state depen-

dence in the treatment effect dynamics. For the AR(2), we specify four cases: (ρδ,1, ρδ,2) =

(0, 0) in Case 1 for no state dependence, (0.3, 0) in Case 2 for pure AR(1), (0.5, 0.2) in Case

3 for a monotonic decay, (0.75, -0.25) in Case 4 for an oscillation response, all with initial

means E[δi0] = 3 and E[δi1] = 1.5. For each experimental setup, we execute Nsim = 100

Monte Carlo simulations.

5.2 Results

In the main text, we focus on the common parameter estimates, joint distribution of the

individual heterogeneity, time-varying treatment effects, and tests, for the specifications

with non-normal distribution, correlated random coefficients, αi ̸⊥ δi | Yi0, and δij ∼ AR(2).

For detailed results across all model specifications, please refer to the online appendix. The

main messages are similar across all specifications.

Table 1 reports the bias, standard error, and RMSE of the QMLE for the common

parameters. Standard errors are computed using the robust QMLE variance formula from

Theorem 3.1. Across all four cases, the QMLE exhibits small bias and variance with RMSE

below 0.05 for every parameter.

Figures 2 and 3 plot the joint distribution of the empirical Bayes estimates λ̃i = (α̃i, δ̃i0, δ̃i1)

via their pairwise marginal heatmaps, for the random coefficients and correlated random co-

efficients designs, respectively.7 The rows correspond to (α̃i, δ̃i0), (α̃i, δ̃i1), and (δ̃i0, δ̃i1), from

top to bottom, and the columns show the oracle, parametric, kernel, and mixture empirical

Bayes estimators, from left to right. All three feasible empirical Bayes estimators produce

very similar heatmaps that closely track the oracle benchmark and successfully capture the

7Note that the distribution p(λ̃) differs from π(λ). The former is based on the empirical Bayes posterior
means and embeds information from each unit’s observed sequence.
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Table 1: Common parameter estimates by QMLE - Monte Carlo

Case 1 Case 2
Bias SD RMSE Bias SD RMSE

ρY 0.000 0.002 0.002 0.001 0.003 0.003
ρδ1 0.000 0.014 0.014 0.023 0.022 0.032
ρδ2 0.000 0.008 0.008 -0.012 0.012 0.017
σ2
U 0.000 0.003 0.003 0.000 0.003 0.003

σ2
ϵ -0.001 0.005 0.005 0.003 0.005 0.006

Case 3 Case 4
Bias SD RMSE Bias SD RMSE

ρY 0.003 0.005 0.006 0.004 0.003 0.005
ρδ1 0.037 0.024 0.043 0.027 0.016 0.031
ρδ2 -0.028 0.014 0.031 -0.015 0.008 0.017
σ2
U -0.001 0.002 0.003 -0.002 0.002 0.003

σ2
ϵ 0.019 0.006 0.020 0.038 0.006 0.038

Notes: DGP: Non-normal, CRC, αi ̸⊥ δi | Yi0, δij ∼ AR(2). (ρδ,1, ρδ,2) = (0, 0) in Case 1, (0.3, 0) in Case
2, (0.5, 0.2) in Case 3, (0.75, -0.25) in Case 4. Initial means: E[δi0] = 3, E[δi1] = 1.5.

bimodal pattern in Figure 2 and the heavy tail behavior in Figure 3. Quantitatively, the

mixture estimator achieves the lowest RMSE for λi, with roughly a 5–10% improvement

over both the parametric and kernel approaches. The parametric estimator shows a slightly

larger bias due to its misspecified Gaussian prior, and the kernel estimator exhibits slightly

higher variance due to its nonparametric setup.

Figure 4 displays the estimated heterogeneous dynamic treatment effect paths across

event time for four DGP scenarios. From top to bottom, the rows show Cases 1–4: no state

dependence, pure AR(1), monotonic AR(2), and oscillatory AR(2). From left to right,

the columns present the infeasible optimum oracle estimator, followed by the paramet-

ric, kernel, and mixture empirical Bayes estimators, as well as the homogeneous TWFE

and TWFE+AR(1) estimators. In each graph, the thin lines depict the heterogeneous dy-

namic responses of the individual units. As before, all feasible empirical Bayes estimators

yield trajectories nearly indistinguishable from the oracle benchmark and accurately recover

each DGP’s dynamic patterns, whether simple exponential decay, gradual tapering, or sign-

changing oscillation, thereby recovering substantial dynamic heterogeneity across units.

The last two columns are the homogeneous estimators. The baseline TWFE estimator

fails to account for the dynamics in the outcome, and produces substantial misspecification

bias with larger and more persistent estimated effects. For the augmented TWFE+AR(1), its
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Figure 2: Joint distribution of λ̃i - Monte Carlo, random coefficients

Notes: DGP: Non-normal, αi ̸⊥ δi | Yi0, δij ∼ AR(2). Case 3: (ρδ,1, ρδ,2) = (0.5, 0.2). Initial means:
E[δi0] = 3, E[δi1] = 1.5.

estimated mean path aligns closely with the true mean pattern, but it is not able to capture

the cross-unit dispersion, and its 95% confidence bands are too narrow to reflect underlying

heterogeneity. In contrast, our empirical Bayes estimators efficiently combine information

across all units and flexibly adapt to each unit’s own response profile, and thus deliver

good estimates of the average treatment path and effectively capture the heterogeneity in

dynamics.

Table 2 reports the rejection rates over 100 simulations for three tests regarding the

heterogeneity pattern. As described in Section 4.2, Test 1 checks for random versus correlated

random coefficients, Test 2 for the joint independence of δij against (αi, Yi0), and Test 3 for

the state dependence in the treatment effect processes.

The table is partitioned into three blocks. The left block reports rejection rates under

a random coefficients DGP in which αi ⊥ δi | Yi0, satisfying the null hypotheses of Tests

1 and 2. The middle block corresponds to a random coefficients DGP with αi ̸⊥ δi | Yi0,

which satisfies Test 1’s null but violates Test 2’s. The right block is based on a correlated
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Figure 3: Joint distribution of λ̃i - Monte Carlo, correlated random coefficients

Notes: DGP: Non-normal, αi ̸⊥ δi | Yi0, δij ∼ AR(2). Case 3: (ρδ,1, ρδ,2) = (0.5, 0.2). Initial means:
E[δi0] = 3, E[δi1] = 1.5.

random coefficients DGP with αi ̸⊥ δi | Yi0, violating the nulls of both Tests 1 and 2. Within

each block, columns give results for Cases 1–4: no AR, AR(1), monotonic AR(2), oscillatory

AR(2), where Case 1 conforms to Test 3’s null and Cases 2–4 lie under its alternative.

Together, the blue entries indicate the size of the tests, while the black entries show their

power. Under the null hypotheses, all tests maintain size close to the nominal 5 % level, with

rejection rates between 0.04 and 0.06.8 Under the alternative hypotheses, the power is 1.00,

possibly due to the relatively large sample size with N = 1000 and T = 10. Therefore, these

tests provide a reliable means of diagnosing the heterogeneity pattern and state dependence

structure. In particular, these tests allow us to assess whether treatment effect dynamics are

driven primarily by unobserved baseline heterogeneity or by the initial treatment impact.

8One observed size of 0.02 likely reflects Monte Carlo noise with only 100 repetitions.
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Figure 4: Event study with time-varying treatment effects - Monte Carlo

Notes: DGP: Non-normal, CRC, αi ̸⊥ δi | Yi0, δij ∼ AR(2). (ρδ,1, ρδ,2) = (0, 0) in Case 1, (0.3, 0) in Case
2, (0.5, 0.2) in Case 3, (0.75, -0.25) in Case 4. E[δi0] = 3, E[δi1] = 1.5. TWFE and TWFE+AR(1): bars
indicate 95% CI, clustered s.e. by unit.

6 Empirical example: recession and unemployment

6.1 Data and sample

Understanding how recessions shape local labor markets is crucial for designing targeted

policy responses. The 2008 Great Recession led to a nationwide spike in unemployment,

peaking at nearly 10% in October 2009, and ushered in a protracted recovery that saw the

national rate fall back to pre-crisis levels only by late 2015.9 However, aggregate figures

mask substantial variation across regions: some counties experienced sharp spikes, while

others bore delayed and milder losses. For example, Yagan (2019) documents long-lasting

employment and earnings losses for harder-hit areas, and Hershbein and Stuart (2020) further

show that those areas also experienced persistent population declines.

In this empirical example, we exploit county-level unemployment data to map these

heterogeneous responses over time. Our outcome, Yit, is the annual unemployment rate for

9See the BLS website, such as https://www.bls.gov/spotlight/2012/recession/pdf/recession_

bls_spotlight.pdf and https://www.bls.gov/news.release/archives/empsit_01082016.pdf
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Table 2: Rejection rates of tests - Monte Carlo

RC, αi ⊥ δi | Yi0 RC, αi ̸⊥ δi | Yi0 CRC, αi ̸⊥ δi | Yi0

Case 1 2 3 4 1 2 3 4 1 2 3 4
Test 1 0.04 0.04 0.04 0.06 0.06 0.06 0.05 0.04 1.00 1.00 1.00 1.00
Test 2 0.05 0.06 0.04 0.06 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Test 3 0.04 1.00 1.00 1.00 0.03 1.00 1.00 1.00 0.02 1.00 1.00 1.00

Notes: DGP: Non-normal, δij ∼ AR(2). (ρδ,1, ρδ,2) = (0, 0) in Case 1, (0.3, 0) in Case 2, (0.5, 0.2) in Case
3, (0.75, -0.25) in Case 4. Initial means: E[δi0] = 3, E[δi1] = 1.5. Blue entries: size; black entries: power.
Based on robust s.e.

Table 3: Common parameter estimates by QMLE - recession and unemployment example

Est. SDx Est. SDx
ρY 0.845 (0.010) σ2

U 0.431 (0.103)
ρδ1 0.306 (0.011) σ2

ϵ 0.276 (0.094)
ρδ2 -0.061 (0.011)

county i in year t. We define the onset of the Great Recession as 2008, assigning it to

period t0 = 5 within a ten year window. The sample spans 2003–2013 (T = 10) across

N = 3142 U.S. counties, capturing five pre- and five post-recession years. The county-

level not seasonally adjusted unemployment rates are obtained from the Bureau of Labor

Statistics (BLS) website, and we aggregate the monthly data to an annual frequency by time

averaging.

This panel event study analysis allows us to estimate county-specific dynamic effects

while controlling for unobserved heterogeneity and serial dependence, thereby shedding light

on both the immediate and persistent impacts of the recession across diverse local economies.

6.2 Results

In this section, we focus on the estimator under the AR(2) specification for δij. Analogous

results for the AR(1) case and models with time fixed effects are provided in the online

appendix.

In Table 3 for common parameter estimates, the estimated persistence in the unemploy-

ment rate is high and significant with ρ̂Y = 0.845, so the omitted variable bias could be

substantial for the traditional TWFE regression. The AR(2) dynamics of the recession-

ary effect are likewise significant with ρ̂δ1 = 0.306 and ρ̂δ2 = −0.061, indicating a damped
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Figure 5: Joint distribution of λ̃i - recession and unemployment example

oscillatory decay in local labor market responses.

Figure 5 presents the heatmaps of the joint distributions of empirical Bayes posterior

means across the parametric, kernel, and mixture estimators. All three estimators yield

qualitatively similar density shapes. The heatmaps also reveal strong non-Gaussian hetero-

geneity with asymmetric mass and possible heavy tails rather than simple elliptical contours.

In the first two rows, counties with higher baseline heterogeneity αi tend to exhibit larger

initial effects (δi0, δi1), indicating that areas already suffering from high unemployment were

hit hardest by the recession. The third row shows a strong positive correlation between

δi0 and δi1, reflecting persistent temporal dynamics in treatment responses. These irregular

patterns underscore the value of the flexible empirical Bayes methods for jointly modeling

(αi, δi0, δi1) and uncovering the rich heterogeneity across counties.

Figure 6 plots county-specific event study estimates of the time-varying treatment effects.

As seen in the joint distributions, all three empirical Bayes estimators produce qualitatively

similar trajectories. The individual curves reveal stark heterogeneity: some counties suffered

a dramatic jump in unemployment of over 7 percentage points in 2009, others experienced
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Figure 6: Event study w. time-varying treatment effects - recession & unemployment example

Notes: TWFE and TWFE+AR(1): bars indicate 95% CI, clustered s.e. by unit.

Table 4: Tests - recession and unemployment example

Test stat Crit. val. Reject?
Test 1 672.6 5.99 Y
Test 2 766.7 9.49 Y
Test 3 1069.2 5.99 Y

Notes: Based on QMLE estimates with robust s.e. Test 1: H0 : b1 = 0; Test 2: H0 : b1 = 0, Σλ,12 = 0; Test
3: H0 : ρδ1 = ρδ2 = 0. Critical values: 5% level.

only modest rises of around 0.5 points, and a few even registered slight declines in the

initial recession year 2008. These spikes and the varied post-2008 decay profiles far exceed

the average effect implied by the TWFE model. In particular, the baseline TWFE yields

pre-2008 coefficients that are significantly different from zero, indicating substantial omitted

variable bias from ignoring the serial dependence of unemployment.

Finally, Table 4 formally tests three key modeling assumptions: see Section 4.2 for a

more detailed description of the tests. The rejections of all three tests reveal several key

features of the Great Recession’s impact on U.S. local labor markets. First, rejecting the

pure random coefficients null (Test 1) shows that the unobserved heterogeneity, including

the treatment effects, is not idiosyncratic but instead systematically related to county char-

acteristics: places with higher pre-crisis unemployment were hit especially hard. Second,

the rejection of the joint independence null (Test 2) confirms a strong link between baseline

heterogeneity and dynamic responses, indicating that local labor market resilience or vul-

nerability cannot be treated as exogenous. Finally, ruling out the no state dependence null

(Test 3) demonstrates that the recessionary impact on local labor markets is not a one-off hit

but unfolds dynamically, with early effects shaping subsequent recovery or further distress.
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Together, these results highlight the inadequacy of homogeneous static TWFE specifications

and validate the need for our dynamic heterogeneous panel framework.

7 Conclusion

In summary, our paper makes three key contributions. First, we demonstrate how omitting

predetermined variables can severely bias event study estimates, and we introduce a semi-

parametric dynamic panel model with correlated random coefficients that simultaneously

captures outcome persistence and treatment effect heterogeneity. Second, we develop a two-

step estimator—QMLE for common parameters followed by an empirical Bayes correction

for unit-specific effects—that is easy to implement and achieves oracle risk performance. Fi-

nally, our analysis offers new insights into standard event study assumptions, including no

anticipation, homogeneous treatment effects across treatment timing cohorts, and state de-

pendence structure, making it easier to diagnose and address potential violations in empirical

research.

The potential applications of our method extend to any setting with short panel data

where we are interested in the dynamics of the heterogeneous treatment effects. In corporate

finance, it can revisit classic event studies of earnings announcements, mergers, or regulatory

changes, allowing for firm-level persistence and heterogeneous responses. In public policy,

it can evaluate staggered social program roll-outs, uncovering differential impacts across

communities or demographic groups. Likewise, research in health, education, environmen-

tal policy, labor markets, and macroprudential regulation can potentially benefit by using

our semiparametric, shrinkage-based estimator to produce more accurate estimates of how

treatment effects evolve over time.
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Appendix:

Time-Varying Heterogeneous Treatment Effects in Event Studies

Irene Botosaru Laura Liu

September 17, 2025

A Proofs

A.1 Identification

Proof of Theorem 2.1. We prove identification in two steps, building on the approach

of Arellano and Bonhomme (2012). First, we establish identification of the parameters

ρ = (ρY , ρδ)
′. Second, given identified ρ, we show that the conditional density π(λi | Yi0) is

identified via characteristic function deconvolution.

Step 1: Identification of common parameters ρ. Under Assumption 2.1 for model

setup, we identify ρ via the following moment conditions.

First, for the autoregressive parameter ρY , under Assumption 2.3, t0 ≥ 3 provides at

least two pre-treatment periods, and the moment condition for ρY is

E

[
1

N

N∑
i=1

t0−1∑
t=1

(Yit − ρY Yi,t−1 − Y t + ρY Y t−1)Yi,t−1

]
= 0,

where Y t = N−1
∑N

i=1 Yit helps remove the individual levels αi. Assumption 2.2(c) ensures

Var(Yi0) > 0, and thus this moment condition is non-degenerate.

Second, for treatment effect persistence ρδ, using treatment and post-treatment periods

t ≥ t0, we exploit the autoregressive structure of δij. Let Ỹit = Yit − ρY Yi,t−1 denote the

transformed outcome. The moment condition is:

E

[
1

N

N∑
i=1

T∑
t=t0+1

ỸitỸi,t−1

]
= ρδE

[
1

N

N∑
i=1

T∑
t=t0+1

Ỹ 2
i,t−1

]
.

Under Assumption 2.3, the condition T − t0 ≥ J ≥ 1 ensures sufficient post-treatment
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observations. Moreover, Assumption 2.2(c) ensures Var(δi0) > 0, and thus this moment

condition is non-degenerate.

Step 2: Identification of π(λi | Yi0) given identified ρ. Having identified ρ in Step 1, we

now verify the conditions of Theorem 2 in Arellano and Bonhomme (2012) for deconvolving

the conditional density π(λi | Yi0). The true composite error Ǔi,1:T (ρδ,0) has the MA(J)

structure

Ǔit(ρδ,0) = Uit +
J∑

j=0

j∑
k=1

ρj−k
δ,0 Dj

itεik.

First, for their Assumption 1 (Mean independence) and Assumption 3 (Conditional in-

dependence), our simple model with common treatment timing t0 together with Assumption

2.1(b) ensures that E[Ǔit(ρδ,0) | λi, Yi0] = 0 and Ǔit(ρδ,0) ⊥ λi | Yi0. Since Wi(ρδ,0) is deter-

ministic and identical across units, we omit it from the conditioning set.

Second, for their Assumption 4 (Non-vanishing characteristic functions), our Assumption

2.2(a) directly imposes that the characteristic functions of λi | Yi0, Uit, and εij are non-

vanishing almost everywhere, which extends to Ǔit(ρ0).

Third, for their Assumption 5 (MA structure), the key insight is that our composite

error involves exactly m = 2 fundamental variance components from Uit and εij, given the

model structure in (1) and (2). Following from Assumption 2.2(a,b), the hessian of the log

characteristic function of Ǔit(ρ0) exists almost everywhere. The hessian can be decomposed

as

vec

(
∂2 log ΨǓi,1:T (ρ0)

(τ)

∂τ∂τ ′

)
= Sω(τ),

for τ ∈ RT , where ω(τ) = (ωU(τ), ωε(τ))
′ with

ωU(τ) =
∂2 log ΨU(τ)

∂τ 2
, ωε(τ) =

∂2 log Ψε(τ)

∂τ 2
.

The selection matrix S = S({Dj
it}, ρδ,0) encodes the treatment pattern and MA lag structure.

Fourth, for their rank condition in equation (24), rank(MiS) = m = 2, where Mi =

IT 2 − (Wi ⊗ Wi)[(Wi ⊗ Wi)
′(Wi ⊗ Wi)]

−1(Wi ⊗ Wi)
′ projects out the design matrix effect.

Here we suppress the dependence on ρ0 for notational simplicity. To illustrate, consider the
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minimal case T = 4, t0 = 3, J = 1. The variance-covariance matrix of Ǔi,1:4 is

ΣǓ =


σ2
U 0 0 0

0 σ2
U 0 0

0 0 σ2
U 0

0 0 0 σ2
U + σ2

ε

 ,

and the selection matrix S is 16 × 2 and encodes how (σ2
U , σ

2
ε) contribute to vec(ΣǓ). The

design matrix is

Wi =


1 0

1 0

1 1

1 1 + ρδ,0

 .

One can verify that rank(MiS) = 2 and satisfying the identification condition.

More generally, under Assumption 2.3, t0 ≥ 3 provides sufficient pre-treatment and treat-

ment periods to satisfy the degrees of freedom boundm = 2 ≤ t0(t0+1)
2

− dλ(dλ+1)
2

where dλ = 2:

see Remark 3 and equation (27) in Arellano and Bonhomme (2012). Then, the projection

matrix Mi removes the variation attributable to the heterogeneous parameters λi, leaving

sufficient variation from the two variance components (σ2
U , σ

2
ε) to achieve identification, and

the rank condition rank(MiS) = 2 holds.

Unlike standard applications, our design matrix Wi(ρ) depends on unknown ρ. Our two-

step approach resolves this because the identification of ρ in Step 1 uses only the covariance

structure of the data and does not require knowledge of π(λi | Yi0).

Finally, we have the sufficient statistic representation

λ̂i(ρ0) = Wi(ρ0)
+(Yi,1:T − ρY,0Yi,0:T−1) = λi + Vi(ρ0),

where Vi(ρ0) = Wi(ρ0)
+Ǔi,1:T (ρ0) is the projection noise. Since the conditions of Theo-

rem 2 in Arellano and Bonhomme (2012) have been verified above, characteristic function

deconvolution yields

Ψλi|Yi0
(τ | Yi0) =

Ψλ̂i(ρ0)|Yi0
(τ | Yi0)

ΨVi(ρ0)(τ)
,

for τ ∈ R2, and the conditional density is recovered via inverse Fourier transform.
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A.2 QMLE

Proof of Theorem 3.1. As defined in the main text, θ = (ρY , ρδ, σ
2
U , σ

2
ε)

′ denotes the

common parameters, and η = (θ′, b′0, b
′
1, vech(Σλ)

′)′ collects both the common parameters

and Gaussian random effects parameters. Recall that the marginal quasi-log-likelihood is

ℓN(η) = −N

2
log |Ω(η)| − 1

2

N∑
i=1

(Yi,1:T − µi(η))
′Ω(η)−1 (Yi,1:T − µi(η)) , (A.1)

where

µi(η) = µi(ρY , ρδ, b0, b1) = A(ρY )Yi0 + W̃ (ρY , ρδ)(b0 + b1Yi0),

Ω(η) = Ω(ρY , ρδ, σ
2
U , σ

2
ε ,Σλ) = B(ρY )ΣǓ(ρδ, σ

2
U , σ

2
ε)B(ρY )

′ + W̃ (ρY , ρδ)ΣλW̃ (ρY , ρδ)
′,

and

A(ρY ) = (ρY , ρ
2
Y , ρ

3
Y , · · · , ρTY )′,

B(ρY ) =



1 0 0 · · · 0

ρY 1 0 · · · 0

ρ2Y ρY 1 · · · 0
...

...
...

. . .
...

ρT−1
Y ρT−2

Y ρT−3
Y · · · 1


,

W̃ (ρY , ρδ) = B(ρY )W (ρδ).

Let s = ∂ℓN/∂η denote the score. We now show that under correct conditional mean

and covariance, the QMLE satisfies E [s(η0) | Yi0] = 0 at the true parameter values.

(i) Random effects mean parameters b0 and b1. These derivatives only involve the

mean.

sb0 =
∂ℓN
∂b0

=
N∑
i=1

W̃ (ρY , ρδ)
′Ω(η)−1(Yi,1:T − µi(η)),

sb1 =
∂ℓN
∂b1

=
N∑
i=1

W̃ (ρY , ρδ)
′Ω(η)−1(Yi,1:T − µi(η))Yi0.

Since E[Yi,1:T − µi(η0) | Yi0] = 0, we have E[sb0(η0) | Yi0] = 0 and E[sb1(η0) | Yi0] = 0.
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(ii) Covariance parameters θσ = (σ2
U , σ

2
ε ,vech(Σλ)

′)′. These derivatives only involve the

covariance matrix. There are five parameters in θσ. For k = 1, . . . , 5,

sθσ,k =
∂ℓN
∂θσ,k

= −N

2
tr

[
Ω(η)−1 ∂Ω

∂θσ,k
(η)

]
+

1

2

N∑
i=1

(Yi,1:T − µi(η))
′Ω(η)−1 ∂Ω

∂θσ,k
(η)Ω(η)−1(Yi,1:T − µi(η)).

As E[x′Ax] = tr(AVar(x)) for x ∼ (0,Var(x)) and Var(Yi,1:T − µi(η0) | Yi0) = Ω(η0), the

second term cancels out the first term, and we have E[sθσ,k(η0) | Yi0] = 0.

(iii) Dynamic parameters ρδ and ρY . These derivatives combine both the mean and

covariance matrix. For ρk ∈ {ρδ, ρY },

sρk =
∂ℓN
∂ρk

=
N∑
i=1

∂W̃ (ρY , ρδ)

∂ρk
Ω(η)−1 (Yi,1:T − µi(η)) (b0 + b1Yi0)︸ ︷︷ ︸

(1)

+−N

2
tr

[
Ω(η)−1 ∂Ω

∂ρk
(η)

]
︸ ︷︷ ︸

(2)

+
1

2

N∑
i=1

(Yi,1:T − µi(η))
′Ω(η)−1 ∂Ω

∂ρk
(η)Ω(η)−1(Yi,1:T − µi(η))︸ ︷︷ ︸

(3)

,

where the (1) is from the mean and E[(1) | Yi0] = 0 by a similar argument as in part (i),

and the (2) and (3) are from the covariance matrix and E[(2) + (3) | Yi0] = 0 by a similar

argument as in part (ii). Note that for ρY , there is Nickell bias for conditional likelihood,

but not for the marginal likelihood here.

Combining parts (i)–(iii), every component of the quasi-score s(η) has zero expectation

under the true DGP, as long as the first two conditional moments are correctly specified.

Finally, under Assumptions 2.1–2.3 and 3.1, the strictly concave quasi-log-likelihood and

pointwise LLN yield consistency by the argmax theorem, and a Taylor expansion of the

score around the true parameter together with the CLT establishes asymptotic normality.

A.3 Ratio optimality

We adopt Assumptions 3.2–3.6 of Liu, Moon, and Schorfheide (2020), restated as in our

setting as follows. First, define the slowly diverging sequence as follows.

Definition A.1 (Slowly diverging sequences)
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(a) AN(π) = ou.π(N
ϵ) for some ϵ > 0, if there exists a sequence ηN → 0 that does not

depend on π ∈ Π such that N−ϵAN(π) ≤ ηN .

(b) AN(π) = o(N+), if for every ϵ > 0, there exists a sequence ηN(ϵ) → 0 such that

N−ϵAN(π) ≤ ηN(ϵ).

(c) AN(π) = ou.π(N
+), if for every ϵ > 0, there exists a sequence ηN(ϵ) → 0 that does not

depend on π ∈ Π such that N−ϵAN(π) ≤ ηN(ϵ).

Intuitively, (a) holds for some ϵ and uniformly in π, (b) holds for every ϵ but only pointwise

in π, and (c) holds for every ϵ uniformly in π.

Assumption A.1 (Trimming and bandwidth)

(a) The truncation sequence CN satisfies CN = o(N+) and CN ≥ (2 logN)/M2.

(b) The truncation sequence C ′
N satisfies C ′

N = CN +
√

(2σ2 logN)/T .

(c) The bandwidth sequence BN is bounded by BN ≤ BN ≤ BN , where 1/B2
N = o(N+),

BN(CN + C ′
N) = o(1), and the bounds do not depend on the observed data or π0 ∈ Π.

Assumption A.2 (CRC distribution: tails) There exist constants 0 < M1,M2,M3,M4 <

∞ such that for the true distribution π0 ∈ Π:

(a)
∫
∥λ∥≥C

π0(λ)dλ ≤ M1e
−M2(C−M3), and

∫
∥λ∥4π0(λ)dλ ≤ M4.

(b)
∫
|y0|≥C

π0(y0)dy0 ≤ M1e
−M2(C−M3), and

∫
y40π0(y0)dy0 ≤ M4.

To estimate the unknown prior nonparametrically, we trim off very large λi so our kernel

estimates do not explode in the tails, but let the trimming threshold CN grow slowly with

N . The exponential tail bound on the prior guarantees little mass beyond CN . Meanwhile,

the kernel bandwidth BN shrinks just fast enough to capture local features of the prior, but

not so fast that variance dominates bias. Together, these conditions balance trimming and

smoothing so the leave-one-out density p̂(−i) is consistent.

Assumption A.3 (CRC distribution: boundedness and smoothness) The conditional

density π0(y0 | λ) is uniformly bounded and

sup
|y0|≤C′

N , ∥λ∥≤CN

∣∣∣∣ 1

BN

∫
ϕ
(

y−y0
BN

)
π0(y | λ)dy

/
π0(y0 | λ)− 1

∣∣∣∣ = o(1),
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where sequences CN , C
′
N , and BN satisfy Assumption A.1.

We need the conditional density π0(y0 | λ) to be smooth on the trimmed region, so that

convolving it with our Gaussian kernel does not distort its shape substantially. This prevents

spikes or point mass priors on Yi0 | λi, ensuring the leave-one-out smoothing step yields a

valid approximation to the true prior.

The posterior mean function and the joint sampling distribution of the sufficient statistic

and the initial condition take the form

m(λ̂, y0; π0) = λ̂+ ΣV (θ0)
∂

∂λ̂
log p(λ̂, y0; π0),

p(λ̂, y0; π0) =

∫
1√

det(ΣV (θ0))
ϕ
(
ΣV (θ0)

−1/2(λ̂− λ)
)
π0(λ, y0)dλ.

Also define the following ∗-counterparts by convolving the prior π0(λ, y0) with a Gaussian

kernel with bandwidth BN . These ∗-objects are the population targets of the expected

leave-one-out kernel estimator

m∗(λ̂, y0; π0, BN)

= λ̂+
(
ΣV (θ0) +B2

NI
) ∂

∂λ̂
log p∗(λ̂, y0; π0, BN),

p∗(λ̂, y0; π0, BN)

=
1

Bd
N

∫
1√

det(ΣV (θ0) +B2
NI)

ϕ
(
(ΣV (θ0) +B2

NI)
−1/2(λ̂− λ)

)
ϕ

(
y0 − ỹ0
BN

)
π0(λ, ỹ0)dλdỹ0.

Assumption A.4 (Posterior mean functions) Let CN be a sequence satisfying Assump-

tion A.1. The posterior mean functions satisfy:

(a) N

∫∫ ∥∥∥m(λ̂, y0; π0)
∥∥∥2 1{∥∥∥m(λ̂, y0; π0)

∥∥∥ ≥ CN

}
p(λ̂, y0; π0)dλ̂dy0 = ou.π0(N

+),

(b) N

∫∫ ∥∥∥m∗(λ̂, y0; π0, BN)
∥∥∥2 1{∥∥∥m∗(λ̂, y0; π0, BN)

∥∥∥ ≥ CN

}
p(λ̂, y0; π0)dλ̂dy0 = ou.π0(N

+),

(c) N

∫∫ ∥∥∥m(λ̂, y0; π0)
∥∥∥2 1{∥∥∥m(λ̂, y0; π0)

∥∥∥ ≥ CN

}
p∗(λ̂, y0; π0, BN)dλ̂dy0 = ou.π0(N

+).

This assumption guarantees that outside a slowly growing ball of radius CN , the contribution

to the overall risk is negligible. In other words, only a vanishing fraction of units have such

extreme estimates that they could undermine our uniform risk bound. We check this not
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only for the posterior mean m and density p, but also for the variance inflated versions

(m∗, p∗) that arise from adding the kernel variance B2
N .

Assumption A.5 (Rates for θ̂) The estimator for the common parameters satisfies

Eθ0,π0

[∣∣∣√N(ρ̂Y − ρY,0)
∣∣∣4] = ou.π0(N

+), Eθ0,π0

[∣∣∣√N(σ̂2
U − σ2

U,0)
∣∣∣2] = ou.π0(N

+),

and similarly for ρδ, σ
2
ε .

Finally, we require our estimator of the common parameters to converge at the usual
√
N -rate

with sufficiently thin tails. This ensures that plugging θ̂ into our empirical Bayes update does

not introduce any first-order errors in the risk comparison against the oracle. By Theorem

3.1, our QMLE estimator attains the required
√
N -rate and thus fulfills this assumption.

Proof of Theorem 3.2. In the simple model under Assumption 2.3 (rank condi-

tion), the common treatment timing design Wi(ρδ) in (4) is deterministic and satisfies

Wi(ρδ)
′Wi(ρδ) invertible with finite eigenvalues. Hence, the Moore-Penrose inverseW+

i (ρδ) =

(Wi(ρδ)
′Wi(ρδ))

−1Wi(ρδ)
′ exists and the sufficient statistic λ̂i(ρ) = W+

i (ρδ) (yi,1:T − ρ̂Y yi,0:T−1)

in (5) is well defined. Following from (3), the covariance of the stacked innovations Σ̌U(θ0) is

positive semidefinite. Then, the projection noise covariance ΣV,i(θ0) = W+
i (ρδ)Σ̌U(θ0)

[
W+

i (ρδ)
]′

is well defined with finite eigenvalues.

Since Wi(ρδ) is deterministic and common across i in the simple model, we follow the

proof strategy in Liu, Moon, and Schorfheide (2020), which instead focuses on individual fore-

casts. Under Assumptions A.1–A.5 governing trimming/bandwidth, CRC tails/smoothness,

posterior mean functions, and
√
N -rates for the common parameters, we obtain the ratio

optimality for the jointly estimated individual effects αi and heterogeneous treatment effects

δi0.

Remark A.1 (Extension: rich controls Ci) Consider the extension in Section 4.1 with

a conditional prior π(λi | Ci), where Ci =
(
Yi0, Z

0:J
i,1:T , X

O
i,0:T , X

P
i0

)
, Z0:J

i,1:T collects treatment

timing and size (w.l.o.g. we consider continuous treatment here), XO
i,0:T are strictly exogenous

covariate paths, and XP
i0 are initial values of predetermined covariates. Now Wi(ρδ) =

W (ρδ, Ci) and ΣV,i(θ) = ΣV (θ, Ci) are functions of Ci.

Assume that W (ρδ0, Ci) has full column rank with the eigenvalues uniformly bounded

away from zero over trimmed Ci. Following from the continuity of W (ρδ, Ci) in ρδ uniformly
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over trimmed Ci, there exists a compact neighborhood ρδ0 ∈ Θρ and a constant 0 < c < ∞
such that

inf
ρδ∈Θρ, trimmed Ci

λmin (W (ρδ, Ci)
′W (ρδ, Ci)) ≥ c,

so W+(ρδ, Ci) is well-defined uniformly over ρδ ∈ Θρ and trimmed Ci. Similarly, the covari-

ance mapping ΣV (θ, Ci) is smooth in θ uniformly over a compact neighborhood of θ0 and

trimmed Ci.

With this in place, replace Yi0 by Ci throughout Assumptions A.1–A.5. The Tweedie

step and the ratio optimality argument then carry over verbatim, now conditional on Ci.
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