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Abstract

This paper examines the identification and estimation of heterogeneous treatment
effects in event studies, emphasizing the importance of both lagged dependent vari-
ables and treatment effect heterogeneity. We show that omitting lagged dependent
variables can induce omitted variable bias in the estimated time-varying treatment ef-
fects. We develop a novel semiparametric approach based on a short-7 dynamic linear
panel model with correlated random coefficients, where the time-varying heterogeneous
treatment effects can be modeled by a time-series process to reduce dimensionality. We
construct a two-step estimator employing quasi-maximum likelihood for common pa-
rameters and empirical Bayes for the heterogeneous treatment effects. The procedure
is flexible, easy to implement, and achieves ratio optimality asymptotically. Our results
also provide insights into common assumptions in the event study literature, such as
no anticipation, homogeneous treatment effects across treatment timing cohorts, and
state dependence structure.

Keywords: Event study, heterogeneous treatment effects, dynamic panel data, corre-
lated random coefficients, empirical Bayes

JEL classification: C11, C14, C21, C23

*botosari@mcmaster.ca (Botosaru) and laura.liu@pitt.edu (Liu). We thank Stéphane Bonhomme,
Simon Freyaldenhoven, Chris Muris, Jon Roth, and conference participants at CFE-CMStatistics for helpful

comments and discussions. The authors are solely responsible for any remaining errors.



1 Introduction

Event study methods have been a cornerstone for tracing dynamic treatment effects in em-
pirical research across economics, finance, public policy, and related fields. Indeed, between
2020 and 2024, over thirty papers employing event study or dynamic difference-in-differences
were published in the American Economic Review. The most common implementation is via
the two-way fixed-effects (TWFE) regression, which aligns units by event time rather than
calendar time, allowing researchers to estimate dynamic responses to treatments and inter-
ventions, while controlling for unobserved heterogeneity that is constant over time within
units (i.e., unit effects) and/or common across units within time (i.e., time effects). In

practice, researchers often estimate

J
Yi=oai+v+ Y Didj+ X[+ Uy,
j=—L

where th indicates that unit ¢ is j periods from its event date, X;; are observed covariates,
«; and 7y are unit and time fixed effects, and {d;} represent average treatment effects at
different leads and lags. Typically, the covariates are assumed to be strictly exogenous, i.e.,
they are uncorrelated with the error term across all time periods, so that current, past, and
future values of the covariates do not respond to shocks in the outcome equation. This
framework is attractive for its intuitive interpretation and straightforward implementation.
See also recent reviews by Freyaldenhoven, Hansen, Pérez, and Shapiro (2021) and Miller
(2023).

Despite its widespread use, the standard two-way fixed effects (TWFE) estimator relies
on strong assumptions that may not hold in empirical applications. In particular, by omit-
ting lagged outcomes, it implicitly assumes that unit and time fixed effects are sufficient to
eliminate all serial dependence in the residual. This assumption is often violated in settings
where economic outcomes — such as consumption, employment, earnings, and investment
— exhibit persistence due to habit formation, adjustment costs, or other dynamic mech-
anisms. When lagged outcomes are correlated with treatment timing, TWFE estimators
conflate causal effects with residual dynamics. This can induce spurious pre-trends, bias
post-treatment estimates, and lead to invalid inference, including misleading placebo tests
and confidence intervals. Although dynamic panel methods are well developed, they remain

underutilized in applied event study analyses.



Second, and of equal importance, is the potential heterogeneity in treatment effects.
While the average treatment effect summarizes the mean response, distributional and wel-
fare analyses often depend on the full distribution of treatment effects across units. For
example, targeted subsidies may yield disproportionate benefits for specific demographic
groups. Assuming homogeneous effects can mask such variation and lead to suboptimal or
inequitable policy recommendations. Furthermore, treatment effects may vary systematically
with observed covariates — such as pre-treatment outcomes or demographic characteristics
— as well as unobserved unit-level attributes, including preferences or ability. Recognizing
and modeling such heterogeneity is therefore essential for designing targeted interventions
and for evaluating their distributional consequences.

In this paper, we introduce a semiparametric model for time-varying heterogeneous treat-
ment effects (TV-HTE) that simultaneously tackles outcome dynamics and cross-unit het-
erogeneity. For example, we can model

J
Yiie = pyYip1 + o+ + Z th&j + X0+ Uy, Uy S (0, 0[2])7

j=0
where py captures outcome persistence, and d;; is the unit- and event-time-specific treatment
effect. To reduce dimensionality, we can impose an AR(p) process on the treatment effects.
For p = 1, we can write
iid .
0ij = psdij-1 + ey €y~ (0,02), j =1,

with d;0 unrestricted. This AR(1) specification parsimoniously captures persistence or decay
in heterogeneous responses while allowing each unit to have a distinct initial effect d;o.

Interpreting A\; = (ay, 00)" as correlated random coefficients, we permit their joint distri-
bution to depend flexibly on the initial outcomes Y;q, exogenous covariates X;, and the treat-
ment timing. Under the assumption of conditional strict exogeneity of treatment—that Uy
is independent of treatment conditional on these covariates—and a mild non-vanishing char-

acteristic function condition, we achieve nonparametric identification of both the common

2

2)" and the conditional distribution of the random coefficients

parameters 0 = (py, ps, 8, 0%, 0
A
Building on the identification result and further assuming Gaussianity on U;; and €;;, we

develop a two-step estimation procedure that is straightforward to implement. In the first



step, we estimate the common parameters 6 by quasi-maximum likelihood (QMLE). To do
so, we assume a Gaussian form for the conditional distribution of the random coefficients \;,
integrate them out of the joint likelihood, and obtain gby maximizing the resulting marginal
likelihood. We show that even when this Gaussian assumption is misspecified, the QMLE
remains consistent and asymptotically normal.

In the second step, we recover unit-specific estimates of \; via empirical Bayes. Let XZ
denote the MLE estimate of A\;. One can show that Xl = \; + V;, where V; has mean zero
and a variance matrix estimated from the first-step output. Tweedie’s formula then yields
the posterior mean that combines this noisy MLE estimate with a correction term that
depends on the derivative of the marginal density of the sufficient statistics. Intuitively, this
correction shrinks the MLE estimate toward regions of higher density in the data, effectively
combining information across units to improve the estimation accuracy.

By focusing on the derivative of the observed marginal density of the sufficient statistics
p(XZ | Yio, X;), we sidestep the challenging deconvolution problem to recover the underly-
ing distribution of (A | Yy, X). The marginal density of the sufficient statistics can be
estimated either parametrically or nonparametrically, and the resulting empirical Bayes es-
timator shrinks noisy unit-level estimates toward a data-driven prior and achieves ratio
optimality, that is, its compound risk converges to the oracle risk that would be attained
by an infeasible estimator with perfect knowledge of the true conditional random coefficient
distribution.

This TV-HTE framework provides several advantages compared to the standard event
study methods. Incorporating the lagged dependent variable eliminates omitted-variable
bias due to persistence. Modeling heterogeneity through a time-series process captures the
dynamics in treatment effects without high-dimensional estimation. The empirical Bayes
step sharpens unit-level estimates in short panels, overcoming the many-means problem.

In addition to the above setup, our framework extends naturally to discrete or continuous
treatments and to staggered adoption designs. We also allow for both strictly exogenous
covariates, whose coefficients may be unit-specific or common, and predetermined covariates
with common effects. The dynamics for Y;; and J;; can be generalized to AR(p) processes,
e.g., AR(2) to capture oscillatory patterns, and the error structure can be generalized to
allow for cross-sectional heteroskedasticity of;; or MA(g) process.

Moreover, our framework also sheds light on common assumptions in event study. For

example, by examining the estimated means of the event-time coefficients in pre-treatment
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periods (j < 0), we can formally test the no anticipation assumption. Also, by comparing
these means across cohorts defined by treatment timing, we can assess the homogeneity
of treatment effects. In addition, our dynamic panel structure with separate persistence
parameters for the outcome py and the treatment effects ps allows us to evaluate state
dependence in both the underlying process and the policy response.

We assess the performance of our TV-HTE estimator through extensive Monte Carlo
experiments and an empirical example on county-level unemployment during the 2008 Great
Recession. In the Monte Carlo, our method nearly replicates the infeasible oracle in re-
covering the distribution of unit-specific effects under Gaussian, bimodal, and heavy-tailed
distributions, and across dynamic response profiles ranging from monotonic decay to oscil-
latory paths. Our tests maintain correct size under the null and exhibit high power. In
the empirical example, we find that the heterogeneous treatment effects are markedly non-
Gaussian and irregularly distributed: county-level unemployment spikes range from roughly
0.5 to over 7 percentage points, far surpassing the average TWFE estimate, and dynamic
trajectories differ across counties as well. Formal tests reject the random effects specifica-
tion, the null of no correlation between heterogeneous effects and baseline heterogeneity,
and the null of no state dependence, instead supporting our correlated random coefficients,

time-varying analysis.

Related literature. Since the pioneering work by Ashenfelter (1978) on estimating the
effects of training programs on earnings using a two-way fixed-effects model, empirical re-
searchers have widely adopted panel data event study designs to quantify causal effects in
economics. However, a growing literature recognizes that homogeneous effect assumptions
can yield misleading estimates in staggered adoption settings, and recent work has fallen into
three methodological strands. First, robust estimators for the mean treatment effect, such
as de Chaisemartin and D’Haultfeeuille (2023) and Borusyak, Jaravel, and Spiess (2024),
rely on carefully constructed two-by-two comparisons or imputation-based counterfactuals
to eliminate bias. Second, group-level approaches, such as Callaway and Sant’Anna (2021),
Goodman-Bacon (2021), and de Chaisemartin and D’Haultfeeuille (2023), estimate cohort-
and period-specific treatment effects and aggregate them with convex weights or interaction
weighted regressions to ensure no negative contributions. Finally, Arkhangelsky, Imbens, Lei,
and Luo (2024) consider individual-level treatment effects via finite-mixture and latent-type

models. In this paper, we also examine individual-level treatment effects and incorporate



an empirical Bayes approach to refine these estimates, thereby improving precision while
flexibly accommodating time-varying heterogeneity. Our analysis also helps assess common
assumptions underlying event study designs, such as those in Sun and Abraham (2021).

To accommodate outcome persistence and mitigate the Nickell bias in short panels, we
draw on dynamic panel methods. Anderson and Hsiao (1982) propose first-differencing and
using deeper lags as instruments to eliminate fixed effects. Arellano and Bond (1991) gen-
eralize this with a GMM estimator that exploits all available lagged levels, substantially
improving efficiency in panels with small 7". Blundell and Bond (1998)’s system GMM fur-
ther addresses weak-instrument concerns when the autoregressive coefficient is high. Arellano
and Bonhomme (2012) show that, under mild serial-correlation restrictions, one can identify
moments—and even the full distribution—of random coefficients in a short panel. Alvarez
and Arellano (2022) develop robust QMLE for dynamic panels that remain valid under het-
eroskedasticity and arbitrary serial correlation, demonstrating that random-effects likelihood
methods can outperform GMM when distributional assumptions approximately hold. In this
paper, we similarly estimate the common autoregressive parameters via QMLE in the first
step, and the time dynamics of the heterogeneous treatment effects are further modeled by
time-series processes to reduce dimensionality.

Our second step employs an empirical Bayes estimator to recover unit-specific treatment
trajectories. Robbins (1951) introduces empirical Bayes as a compound decision problem,
yielding shrinkage rules that minimize average risk without knowing the prior distribution.
With exponential family likelihood, T'weedie’s formula links posterior means to the deriva-
tives of the marginal density of sufficient statistics, enabling nonparametric 7-modeling em-
pirical Bayes (Efron, 2011). Brown and Greenshtein (2009) and Jiang and Zhang (2009)
establish that maximum-likelihood empirical Bayes estimators for normal-means problems
achieve asymptotic minimaxity or ratio optimality. Gu and Koenker (2017) and Liu, Moon,
and Schorfheide (2020) show substantial gains in estimation and forecasting accuracy by
efficiently combining information across cross-sectional units. In this paper, we employ both
parametric and nonparametric empirical Bayes to obtain posterior mean estimates of unit-
specific treatment trajectories, optimally balancing individual signal and noise, and establish
their ratio optimality.

The remainder of this paper is organized as follows. Section 2 introduces the model
and discusses the identification of time-varying heterogeneous treatment effects. Section 3

presents our two-step estimation method and establishes its asymptotic properties, including



ratio optimality. Section 4 extends our estimator to various contexts and discusses tests for
common event study assumptions. Section 5 conducts Monte Carlo experiments to examine
the finite-sample properties of our estimators. Section 6 employs our panel data estimator
to analyze how the Great Recession in 2008 affected local labor markets. Finally, Section 7
concludes. Appendix A provides the proofs for all propositions and theorems, and the online

appendix contains additional tables and figures.

2 Simple model and identification

2.1 Importance of lagged dependent variables

Economic series tend to be persistent over time. For example, consumption adjusts gradually
as habits evolve, and wages move slowly amid contract and adjustment frictions. When such
built-in persistence coincides with event timing, the dummy variables in a TWFE regression
absorb not only the true effect of the intervention but also the persistence present in the
data. As a result, what appear as treatment effects may also reflect the persistence of
past outcomes, giving rise to spurious pre-trends, distorted post-treatment estimates, and
misleading inference in placebo tests and confidence intervals.

A simple, yet revealing, illustration shows why excluding lagged dependent variables
from an event study regression generates omitted variable bias in the estimated treatment
effect path. Consider a panel with five periods (¢t = 0,1,2,3,4) and a common treatment
occurring at t = 2, so that Dgt = 1{t — j = 2}. Suppose the true DGP is an AR(1) model

with persistence py and a treatment effect path (g, d1, d2),

2
Yie = pyYig1+ Y Do + Us,

J=0

and let E[Y;o] = 0 for simplicity. In contrast, the naive event study regression omits dynamics

and simply fits
2

Yi=)_ Djb;+Us.

J=0

Because the true outcomes are serially correlated, each indicator DY, is correlated with the



Figure 1: Omitted variable bias - toy example
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Notes: The black dashed line shows the true treatment effect path (d,d1,d2) = (1,1.2,0.5), while the blue

solid line shows the estimated treatment effect path of {¢;} from a naive event study regression without
lagged dependent variables. The blue band shows the 95% confidence interval.

omitted lag Y;, 1, producing bias in gj One can show analytically that

0, Jj =0,
Bias(d;) = pyE [D2Yii1] = pyE[Yi 1] = < pydo, Jj=1,

py 01+ py-0o, J = 2.

Thus, even if the true effect at j = 0 is identified without bias, biases accumulate at longer
horizons, distorting the entire treatment path.

Figure 1 contrasts the true effects (black dashed) with the biased estimates (blue solid) for
py = 0.8 and (dg, d1,02) = (1,1.2,0.5) in a simulated sample of N = 100, and their differences
are statistically significant. This toy example highlights the necessity of explicitly modeling
lagged dynamics in event study designs. By incorporating Y;; i, researchers can control for

outcome persistence and recover unbiased estimates of the time-varying treatment effects.

2.2 Dynamic panel with time-varying het. treatment effects

We now introduce a simple dynamic panel framework that accommodates both persistence
in the outcome and heterogeneous treatment effects across units and event time horizons.
To highlight the main intuition, we focus on a simple model that drops time fixed effects
and other covariates, and adopts a common treatment timing in this section. More general

cases are discussed in subsequent sections.



Let : = 1,..., N index cross-sectional units and t = 0,...,7T denote time periods. We
consider a large N, fixed T" setup, which is natural for many event study applications where
the number of treated and control units is large but the available pre- and post-treatment
windows are of limited length. For simplicity, each unit undergoes a single treatment at a
common period t5. We define the event time indicator th =1{t—j=ty}, 7=0,1,...,J,
so that DJ, = 1 when unit i is in the jth period after treatment. Our baseline outcome
equation augments a standard dynamic panel with these event time dummies

J
Yii=pyvYii1+o; + Z D{t&j + Uy, Uy S (0, U?])- (1)

5=0
Here, py captures first-order persistence in the outcome, while the unit-specific intercept «;
controls for time-invariant heterogeneity. The term 0;; is the treatment effect for unit ¢ at
event time j, allowing each unit to respond differently and dynamically to the intervention.

Because freely estimating the full matrix {d;;} would involve (J 4+ 1) x N parameters,
we can incorporate a simple time series structure on the heterogeneous effects to reduce the
dimensionality.! For example, for j > 1 we assume an AR(1) process

iid
5,']' = pgéi,j_l + €ijy Eij ~ (0, 052) (2)

The persistence parameter ps governs the decay or oscillation of treatment effects over suc-

2

2 captures unit-specific shocks to the response path.

cessive periods, while the variance o
Only the initial effect d;p remains freely heterogeneous, enabling each unit to have its own
starting point for the dynamic treatment response.

To capture potential correlations between initial outcomes, individual heterogeneity, and

initial treatment effects, we let
Ai = (0%'751‘0)/7 Ai | Yio ~ 77()\2' ’ Y%o),

where 7(A | Yp) is an unrestricted conditional density. This correlated random coefficients

specification allows «y; and ;9 to depend flexibly on the initial outcome Yjy (and, in extensions,

IThe assumed time series structure for di; is testable in the data. For example, one can obtain preliminary
estimates of the individual effect trajectories by orthogonal forward differencing of Arellano and Bover (1995),
and then subject these series to standard time-series diagnostics to assess whether an AR(p) process provides
an adequate fit.



on additional exogenous covariates). Moreover, by allowing for correlation between the
baseline heterogeneity «; and the initial treatment effects 9,9, the framework can capture
meaningful heterogeneity in treatment effects that standard event study methods might

overlook.

2

2) with true value 6y, we aim

Collecting the parameters into the vector 6 = (py, ps, 0%, 0

to recover #, the conditional distribution of A;, and posterior mean estimates of \;.

2.3 Identification

We now formalize the conditions under which both the common parameters ¢ and the con-

ditional distribution of the unit-specific coefficients \; are nonparametrically identified.

Assumption 2.1 (Model) Consider the simple model given by (1) and (2) with common

treatment period tg.
(a) (Yio, A\;) are i.i.d. across i.
(0) Uit L (Yiot—1,Mi), €ij L (0i1:5-1, Yio, i), and Uy L g5, for all i, t, and j.

Condition (b) implies that the combined error terms U;1.7(ps) in (3) and hence the noise
Vi(ps) in (5) below are independent of \; conditional on Yjy, a key requirement for the

deconvolution exercise.

Remark 2.1 (Conditional exogeneity in treatment) Under a common treatment tim-
ing, our baseline specification implicitly imposes conditional exogeneity of treatment: the
innovation Uy, is assumed independent of the event time indicators DY, (or, in a more general
case with different treatment timings, independent once we condition on observed covari-
ates). This condition ensures that the design matrix W;(ps) for heterogeneous coefficients in
(4) below is exogenous, so that the deconvolution step yields valid identification results.

It is useful to contrast this with the classic parallel trends assumption, which typically
requires no outcome persistence (py = 0) and E[Ui(to) \ {Df]}] = 0, where U,L»(to) denotes the
potential error under no treatment. Here we relax the parallel trends assumption by allowing

py # 0.2 Although our conditional exogeneity assumption is stronger than standard parallel

2Under our model, the transformed outcome Y;;— py Yi+—1 satisfies a conditional parallel trend assumption
once we control for exogenous covariates, as discussed in Wooldridge (2021).

10



trends in terms of its assumption on the error terms, it affords us the flexibility to estimate
richer heterogeneous treatment effect trajectories.

Moreover, by framing (o, d;0) as correlated random coefficients, we naturally accommo-
date selection on unobservables, where treatment timing can correlate with observed covari-
ates, latent heterogeneity including heterogeneous treatment effects, as well as time fixed

effects in the general model.

Combining the simple dynamic panel data model (1) and the AR(1) process (2), we

obtain

J J J
Yie — pyYis—1 = a; + (Z P§D§t> dio + <Uit + Z Z Pf;_kthEz'k) : (3)

j=0

where U; 1.7(ps) is a mean-zero vector with covariance matrix ¥ (). Next, define the 7' x 2

design matrix W;(ps) by

P
1 ijo psD

T
1 Zj:o psDiy (4)

Wilps) =
Joind
1 ijo PsDir
and let W;;(ps) be its t-th row.? The model can then be written compactly as
Yie — py Y1 = Walps)'Ai + Ua(ps).-
Given p = (ps, py)’, the OLS/MLE estimator of the latent coefficient vector \; is

Xi(p) = Wilps)™ (Yira — pyYior—1) = A + Vi(ps), (5)

where W;(ps)t = (VVZ-(p(;)’I/V,-(p(;))_1 Wi(ps)' and Vi(ps) = Wi(p(;)*f]i,lq(p(;), which is mean-

zero and has covariance matrix Yy;(0) = Wi(ps) T (0)[Wi(ps) ). Thus, Ai(p) is a sufficient
statistic for \; with noise V;(ps).

3In our simple setup with common treatment timing to, the design matrix W;(ps) is deterministic and
homogeneous across all units, so there is no need to condition on it in the assumptions and derivations,
thereby simplifying the exposition.
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Assumption 2.2 (Distributions)

(a) The characteristic functions of N; | Yio, Uy, and €;; are non-vanishing almost every-

where.

(b) The characteristic functions of Uy and €;; are twice differentiable.
(¢) Var(dy) > 0 and Var(Y) > 0.

Conditions (a) and (b) guarantee that the convolution in (5) can be inverted via characteristic
function methods, thereby recovering the conditional distribution of \; | Yjo. Condition (c)
ensures cross-sectional variation in both the initial treatment effects and initial outcomes,

guaranteeing that the moment conditions for identifying ps and py are non-degenerate.

Assumption 2.3 (Rank condition) tqo >3, and T —ty > J > 1.

Since Ui,lzT(p(;) is an MA(J) process in the error terms {Uy, €;;}, we require sufficient pre-
treatment variation to disentangle these shocks from the treatment effect dynamics. In the
simple common timing design, this amounts to imposing tq > 3, which helps satisfy the rank
conditions in Arellano and Bonhomme (2012). For general cases with different treatment
timings and additional covariates, we can extend to a more general rank condition on the
expanded design matrix. T — 1ty > J > 1 ensure that there are enough post-treatment

observations to identify the full sequence of dynamic treatment effects.

Theorem 2.1 (Nonparametric identification) Under Assumptions 2.1-2.3, the common

parameters 6 and the conditional density w(\; | Yio) are identified.

First, we can identify the autoregressive parameters p from moment conditions. Second,
the identification of the conditional density 7()\; | Yio) relies on the sufficient statistics
representation (5). Taking characteristic functions on both sides transforms the convolution
in the time domain into a product in the frequency domain, so one obtains on the right
hand side a product of the characteristic functions of the latent coefficients A; | Y;o and
the noise term V;(p). Under the non-vanishing characteristic functions, this product can be
deconvolved to recover both distributions. Our proof builds on the deconvolution argument
of Arellano and Bonhomme (2012) and Liu (2023) for correlated random coefficients panels

and extends it to the dynamic event study framework.
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Algorithm 1 Semiparametric TV-HTE estimator

Input: Panel data {K-t}ﬁzgj_':::f,, treatment timing ¢q, horizon J.
Output: Estimates of common parameters 6 and unit-level parameters {\;}.

Step 1: QMLE for common parameters. Maximize the marginal quasi-log-likelihood
N
(3 (0, b0, b1, 2) = Y log ¢ (Yirers (6, bo, br), (6, %))),
i=1

where p;(+) and €;(-) are given in (6), to obtain (é\,/b\o,/b\l, §A>
Step 2: Empirical Bayes for unit-specific parameters
— o — N
1. Build T'x 2 matrix W; = W;(ps) with rows [1, ijo ﬁngt] ,and W.H = (W[W@) w.

2. Compute OLS/MLE estimate and noise covariance

o~ —~~ A~ o~ o~

A= Wf (yi,l:T - /P\Yyi,O:T—l) , o v = /WZJFZU(Q)WGH'

3. Estimate marginal density of the sufficient statistics p(xZ | Yio) either parametrically

or nonparametrically.

4. Apply Tweedie’s formula:

Ai = X@ + iv,ivxi logﬁ():i | yio) .

3 Estimation and asymptotics

3.1 Two-step estimation

Building on the identification results and further assuming Gaussianity on Uy and g;;, we
implement a simple two-step estimator that first estimates the common parameter and then
recovers the unit-specific parameters, as summarized in Algorithm 1.

In the first step, we estimate the common parameters 6 by QMLE, treating the latent

coefficients \; | Yjo as if they followed a Gaussian regression model

i | Yio ~ N (bg + b1Yi0, X)) .

13



Even though this correlated random coefficients distribution may be misspecified, maximiz-
ing the resulting marginal likelihood over # and the nuisance parameters (b, by, X)) yields
consistent and asymptotically normal estimates for 6. In practice, the Gaussian prior and

likelihood imply conjugacy, yielding a closed-form marginal likelihood
Y;,I:T ~ N(IM(@ bo, bl), 91(9, 2/\)) )
where

148, b0, b1) = Alpy)Yio + W (py, ps) (bo + b1 Yio) (6)
(0, 25) = B(py)Se(0)B(py) + W py, ps)EaW (py-. ps)',

where A(py) = (py, p%, ..., p¥) captures initial condition propagation, B(py) is the T x T
lower triangular matrix with (s, ¢)-th element p3-* for s > ¢ (zero otherwise), and W(py, ps) =
B(py )W (ps) transforms the treatment design matrix. We can efficiently maximize this
marginal likelihood using standard numerical optimization routines.

In the second step, the sufficient statistic Xl(p) has been derived in Section 2.3: see
equation (5). For the empirical Bayes estimator, we exploit Tweedie’s formula (Robbins,

1951; Efron, 2011) to compute the posterior mean of each unit’s random coefficients \;,

E D\ | Yo fo, 0] = (o) + Sva0) = logp (Ru(0) | Vo). 1)
ONi(p)

The first term is the OLS/MLE estimate and the sufficient statistic /):i(p), while the second
term is a Bayes correction that depends on the derivative of the marginal density of the
sufficient statistics A;(p) | Yio. The correction term adapts to the local shape of the marginal
density of Ai(p) | Yio: a positive derivative indicates the estimate falls below the mode
so we shrink upward, while a negative derivative indicates it lies above the mode so we
shrink downward. Moreover, steeper slopes, i.e., higher density concentration, yield larger

corrections, whereas flatter regions induce milder shrinkage.
With fixed T" in event studies, the unit-specific parameters \; cannot be consistently es-
timated; instead, the empirical Bayes estimator helps efficiently combine information across
all units to shrink and refine these estimates, thereby reducing the overall compound risk.

Crucially, Tweedie’s formula circumvents the challenge to deconvolve the latent coefficient

14



density 7(\; | Yio); one only needs to estimate the marginal density of the observable quan-
tities (XZ(/)), Yz‘o) 4 In practice, this marginal can be fit parametrically, such as plugging in
the Gaussian form implied by the QMLE, or nonparametrically via kernel or mixture meth-
ods. The former is easier to implement, while the latter helps reveal richer heterogeneity
patterns. The resulting empirical Bayes estimator shrinks the noisy OLS/MLE :\\,(p) toward
a data-driven prior and attains ratio optimality, i.e., its compound risk is asymptotically

equivalent to the oracle risk, where one knows the true conditional distribution of \;.

3.2 Asymptotics for QMLE

We now establish that the QMLE in the first step is consistent and asymptotically normal.

Assumption 3.1 (Estimation)
(a) Uy and e;; follow Gaussian distributions with o, o2 > 0.
(b) (N, Yio) have finite fourth moment.

This Gaussianity condition (a) is imposed for the two-step estimator, not for identification.
Nonparametric identification in Theorem 2.1 only requires a non-vanishing characteristic
function of the composite noise, regardless of its exact distribution. In more general speci-
fications with additional covariates, we need only conditional Gaussianity of {Uy, €;;} given
those covariates. Furthermore, if one forgoes the AR(p) dimension reduction and instead
directly estimates the full vector of {¢;;}, the normality of ¢;; can also be dispensed with.
However, when employing the AR-based reduction, where V;(p) is a linear combination of Uj;
and €;j, we require that this composite noise lie in an exponential family, such as Gaussian,
to obtain the Tweedie’s formula for the empirical Bayes estimator.

Let n = (¢, by, b}, vech(X,)")" collect both the common parameters and the Gaussian
prior parameters, and 7y be the pseudo-true value of n. For the prior parameters, by, and
by o are those that minimize the Kullback-Leibler distance between the true conditional dis-
tribution of )\; | Y;o and the working Gaussian regression. Equivalently, b, o is the best linear
predictor coefficient of A\; on Yy and by = E[\;] — b1 oE[Y}o], while ¥, o is the corresponding

residual covariance.

4Since the conditional and joint log densities differ only by a constant that drops out under differentiation,

we can work with logp (X“ Yio) instead of log p (Xz | Yio) in practice.
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Theorem 3.1 (QMLE) Under Assumptions 2.1-2.3 and 3.1,
. . d _ _
720, VN (@ —n0) = N (0, H(no) " G(no) H(no)™") .

where
H(no) = —E [V2li(no)],  G(mo) = E[V,li(no)Vyli(mo)'],

and {; is the marginal quasi-log-likelihood of Y; 1.7. The asymptotic variance ofé\ 1s obtained

by taking the corresponding sub-block of this sandwich matrix.

The intuition is in line with standard M-estimation arguments applied to a pseudo-likelihood:
the identification and moment conditions ensure a unique maximizer and uniform conver-
gence of the score, while smoothness guarantees a valid Taylor expansion of the log-likelihood.
The resulting sandwich-form variance reflects potential misspecification of the prior. Note
that the there is no Nickell bias for the marginal likelihood after integrating out \;, although
there is for the conditional likelihood: see also the robust QMLE discussion in Alvarez and

Arellano (2022).

3.3 Ratio optimality for empirical Bayes

In this subsection, we show that the empirical Bayes estimator in the second step achieves
oracle risk performance.

Define the risk for any estimator XL ~ and the oracle risk as follows:

N

> Varg, (A | Yioer)

=1

RN(XLN; 0, 70) = Egy ., . R0, m0) = Egy o

Y

N ~
> I = Al
=1

where the subscripts (6p, mp) indicate that the expectation and variance are under the true
data generating law Py, »,. 0p and 7 are unknown to the econometrician but fixed in the

DGP. Let the leave-one-out kernel estimator be

p(—i)<)‘i(p)7yi0) :mZB—%gb <w>¢< OBNyo> :
J#i
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with d = dim(X) + 1, and the empirical Bayes estimator for \; be

)\i:

M)+ (St Bikanny) 555 o8P0 (360 Yo)

: (8)

Cn

where iV,i is given in Algorithm 1, and [-]¢, means truncate the vector inside to lie within
the Euclidean ball of radius Cl.

We adopt Assumptions 3.2-3.6 of Liu, Moon, and Schorfheide (2020), restated as As-

N

sumptions A.1-A.5 in Appendix A.3. First, exponential tails for ()\;,Yj) ensure that the
probability mass trimmed away at ||\;]] > Cy vanishes as N — oo. Second, trimming
and bandwidth rates (Cy, CY, By) balance kernel bias and variance. Third, smoothness of
7(Yio | Ai) prevents sharp spikes in the distribution of Y;o. Together, these conditions ensure
that the leave-one-out density p(_;) is consistent. Fourth, posterior-mean truncation ensures
that the empirical Bayes procedure remains stable by preventing outlier units with extreme
estimates from dominating the overall performance, thereby maintaining uniform control
over the risk across all possible priors. Finally, v/ N-consistency of the common parameters

0 follows from the QMLE result in Theorem 3.1.

Theorem 3.2 (Ratio optimality) Let 6y denote the unknown true parameter, treated as
fized in the DGP. Under Assumptions 2.1-2.3, 3.1, and A.1-A.5, the empirical Bayes esti-

mator :\VLN in (8) achieves gg-ratio optimality uniformly over my € I1: for any ey > 0,

R X N _ Roracle 2]
limsup sup N( 1:N» 077T0) N ( 0,71'0) S 0.
N—oo mo€ell NE@Q,TFQ[V(]JTQQ,W()(AZ' | )/i,OZT)] + NEO

In a decision theoretic framework for compound risk, our event study estimator attains ratio
optimality, meaning that its overall risk converges to the infeasible oracle benchmark up to
vanishing terms. In other words, the mean squared error of our empirical Bayes shrinkage
estimator is asymptotically equivalent to the minimum possible risk one would achieve if the
true distribution of \; | Y;o were known. Our analysis builds on the foundational work of
Brown and Greenshtein (2009) on compound decision problems, the refinements by Jiang
and Zhang (2009), and the recent dynamic panel extension of Liu, Moon, and Schorfheide
(2020).
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4 Extensions and tests

4.1 Extensions

Beyond the baseline specification in (1) and (2), our proposed method accommodates various
extensions to address richer policy questions and realistic data features. First, one can gen-
eralize the treatment indicator DY, to discrete or continuous dosages Z7,, accommodate stag-
gered adoption designs by allowing treatment timing to vary across units, incorporate time
fixed effects 7; further controls for common shocks, and estimate ¢;; for j € {—L,..., -1}
to partially check for the no anticipation assumption.

Second, additional covariates X;; can be woven into both the QMLE and empirical Bayes
steps. For strictly exogenous controls X¢, their coefficients can be either common or unit-
specific, whereas for predetermined covariates X}, they can only have common coefficients
to ensure identification. These covariate extensions allow researchers to flexibly adjust for
observed confounders while still exploiting the shrinkage benefits of empirical Bayes.

Third, the dynamic structure itself can be enriched. Both the outcome process Y;; and the
treatment effect sequence §;; may follow AR(p) dynamics; in particular, AR(2) specifications
capture potential non-monotonic or oscillatory responses that simple AR(1) models miss.
Moreover, the error term U can be generalized to admit cross-sectional heteroskedasticity
o, (see for example, Chen (2022) and Liu (2023)) or temporal dependence via MA(q)
processes, improving finite sample inference under complex serial correlation patterns.

Finally, our empirical Bayes prior can conditional on various observables: one can consider
w(A; | C;), where conditioning variables C; can include the initial outcome Yjy, treatment
timing and size D/, or Z7,, whole time series paths of strictly exogenous covariates Xl%:T, and
initial values of predetermined covariates X% . Under a conditional strict exogeneity assump-
tion, namely, the error terms Uy, is independent of the treatment conditional on (XZ%:T, X5,
these extensions preserve identification and capture richer sources of heterogeneity across

units.

4.2 Tests

Our analysis not only delivers flexible estimates of treatment effect heterogeneity but also
provides a unified toolkit for formally testing model specifications and key event study as-

sumptions.
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In terms of model specification, first, we can examine whether we have random coeffi-
cients, where )\; is uncorrelated with Y;q, against correlated random coefficients (Hy: by = O).5
We can test whether there is no correlation between heterogeneous effects and individual het-
erogeneity, where ); is uncorrelated with Yy and ¢;; is uncorrelated with o; conditional on
Yio (Hp: by = 0, £512 = 0). Third, we can check the absence of state dependence in J;;
(Ho: ps1 = ps2 = 0). See Table 2 for the size and power of these tests in our simulation
study, and Table 4 for their performance in the county-level recession and unemployment
application.

In terms of common event study assumptions, first, as discussed in Remark 2.1, the
parallel trends assumption, such as Assumption 1 in Sun and Abraham (2021), amounts
to zero persistence in Yj; absent treatment (Hy: py = 0). Second, the no anticipation
assumption, such as Assumption 2 in Sun and Abraham (2021), requires that E[6;;] = 0
for 7 < 0, which can be tested by verifying that pre-treatment event time coefficients have
zero mean. Third, the homogeneous treatment effects assumption, such as Assumption 3
in Sun and Abraham (2021), implies identical mean treatment paths across cohorts defined
by treatment timing, which can be assessed by comparing the estimated means of d;; across

these cohorts.

5 Monte Carlo simulations

5.1 Alternative estimators and DGPs

Alternative estimators. In our simulation study, we evaluate two broad groups of es-
timators for time-varying treatment effects in event studies: the homogeneous treatment
effect estimators and the heterogeneous treatment effect ones. For simplicity, we focus below
on the basic setup of Section 2.2 without time fixed effects and additional covariates, and
extensions to the generalized model in Section 4.1 can be carried out in a similar manner.
The first group comprises the traditional TWFE without any lagged outcome and an

augmented version with an AR(1) term. The baseline TWFFE regresses the observed outcome

5Uncorrelation is a necessary but not sufficient condition for independence, making this a more conser-
vative test.
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Y;; on event time dummies and unit fixed effects,

J
Yie = Z Dj,05 4 i + Uy,
j=—L
normalizing the pre-treatment period by setting 0_; = 0. While straightforward, omitting
dynamics can lead to omitted variable bias when outcomes are serially correlated. To miti-
gate this bias, we introduce an augmented TWFE+AR(1) estimator, which includes a lagged

outcome Y, ; as an additional regressor,

J
Yie = pyYir1 + Z théj + a; + Uy, mnormalizing 6_; =0,
j=—L
while still consider a common effect d; across units.

The second class of estimators allows for unit-specific dynamic responses as in (1). We
consider the following four heterogeneous treatment effect estimators, which differ in how
they recover the marginal density of the sufficient statistics p(x | Yo) in Tweedie’s formula
(7). The oracle estimator knows the true distribution and the true common parameters,
and thus attains the infeasible optimum to which we benchmark our feasible estimator. The
parametric estimator adopts a parametric form of the distribution, typically Gaussian, which
is in line with the QMLE and easy to implement. The nonparametric estimator models the
distribution via kernel or mixture and offers flexibility to uncover complex heterogeneity
patterns at the cost of longer computation time and higher variance.® Our main focus is on

the parametric and nonparametric approaches.

DGPs. We simulate panel data according to a dynamic event study model in (1), and the

treatment effect sequence {d;}7., follows an AR(p) process,

p
iid 9
dij = § paplijp +€ij, €~ N(0,072),
k=1

for j = p,...,J, with initial draws d;.

In our baseline design, we set the cross-sectional sample size to N = 1000, the time series

SFor the kernel estimator, we use a Gaussian kernel with bandwidth chosen by Silverman’s rule of thumb,
which performs well in our simulations and empirical application, although more advanced bandwidth selec-
tion methods could further improve its estimation accuracy.
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dimension to T" = 10, the treatment onset to t, = 5, and the maximum event horizon to
J = 5. The common parameters are py = 0.8, 05 = 1/T, and 02 = 1/T.

For the distribution of unit-specific parameters m(A | Y0), we take into account the
following four aspects that capture different heterogeneity and state dependence patterns.
First, we explore both normal and non-normal distributions. Second, we examine both a
random coefficients (RC) setup with A; L Yjy and a correlated random coefficients (CRC)
setup with \; Y Yjo. Third, we investigate scenarios where «; and d; are either independent
or correlated conditional on Y. Finally, we consider both AR(1) and AR(2) for state depen-
dence in the treatment effect dynamics. For the AR(2), we specify four cases: (ps1, ps2) =
(0, 0) in Case 1 for no state dependence, (0.3, 0) in Case 2 for pure AR(1), (0.5, 0.2) in Case
3 for a monotonic decay, (0.75, -0.25) in Case 4 for an oscillation response, all with initial
means E[d;] = 3 and E[d;1] = 1.5. For each experimental setup, we execute Ng, = 100

Monte Carlo simulations.

5.2 Results

In the main text, we focus on the common parameter estimates, joint distribution of the
individual heterogeneity, time-varying treatment effects, and tests, for the specifications
with non-normal distribution, correlated random coeflicients, o; £ 6; | Yio, and 6;; ~ AR(2).
For detailed results across all model specifications, please refer to the online appendix. The
main messages are similar across all specifications.

Table 1 reports the bias, standard error, and RMSE of the QMLE for the common
parameters. Standard errors are computed using the robust QMLE variance formula from
Theorem 3.1. Across all four cases, the QMLE exhibits small bias and variance with RMSE
below 0.05 for every parameter.

Figures 2 and 3 plot the joint distribution of the empirical Bayes estimates XZ = (i, (5Ni0, gﬂ)
via their pairwise marginal heatmaps, for the random coefficients and correlated random co-
efficients designs, respectively.” The rows correspond to (a;, gig), (v, gﬂ), and (;5;0, gﬂ), from
top to bottom, and the columns show the oracle, parametric, kernel, and mixture empirical
Bayes estimators, from left to right. All three feasible empirical Bayes estimators produce

very similar heatmaps that closely track the oracle benchmark and successfully capture the

"Note that the distribution p()) differs from m(\). The former is based on the empirical Bayes posterior
means and embeds information from each unit’s observed sequence.
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Table 1: Common parameter estimates by QMLE - Monte Carlo

Case 1 Case 2
Bias SD RMSE Bias SD RMSE
py 0.000 0.002 0.002 | 0.001 0.003 0.003
ps1 0.000 0.014 0.014 | 0.023 0.022 0.032
ps2  0.000 0.008 0.008 | -0.012 0.012  0.017
o? 0.000 0.003 0.003| 0.000 0.003 0.003
o2 -0.001 0.005 0.005| 0.003 0.005 0.006
Case 3 Case 4
Bias SD RMSE Bias SD RMSE
py 0.003 0.005 0.006 | 0.004 0.003 0.005
ps1 0.037 0.024  0.043 | 0.027 0.016  0.031
ps2 -0.028 0.014  0.031 | -0.015 0.008  0.017
o -0.001 0.002 0.003 | -0.002 0.002  0.003
o? 0.019 0.006 0.020 | 0.038 0.006 0.038

€

(0, 0) in Case 1, (0.3, 0) in Case

Notes: DGP: Non-normal, CRC, a; £ §; | Yio, ;5 ~ AR(2). (ps.1,ps52) =
3, E[0,1] = 1.5.

2, (0.5, 0.2) in Case 3, (0.75, -0.25) in Case 4. Initial means: E[§;o] =

bimodal pattern in Figure 2 and the heavy tail behavior in Figure 3. Quantitatively, the
mixture estimator achieves the lowest RMSE for \;, with roughly a 5-10% improvement
over both the parametric and kernel approaches. The parametric estimator shows a slightly
larger bias due to its misspecified Gaussian prior, and the kernel estimator exhibits slightly
higher variance due to its nonparametric setup.

Figure 4 displays the estimated heterogeneous dynamic treatment effect paths across
event time for four DGP scenarios. From top to bottom, the rows show Cases 1-4: no state
dependence, pure AR(1), monotonic AR(2), and oscillatory AR(2). From left to right,
the columns present the infeasible optimum oracle estimator, followed by the paramet-
ric, kernel, and mixture empirical Bayes estimators, as well as the homogeneous TWFE
and TWFE+AR(1) estimators. In each graph, the thin lines depict the heterogeneous dy-
namic responses of the individual units. As before, all feasible empirical Bayes estimators
yield trajectories nearly indistinguishable from the oracle benchmark and accurately recover
each DGP’s dynamic patterns, whether simple exponential decay, gradual tapering, or sign-
changing oscillation, thereby recovering substantial dynamic heterogeneity across units.

The last two columns are the homogeneous estimators. The baseline TWFE estimator
fails to account for the dynamics in the outcome, and produces substantial misspecification

bias with larger and more persistent estimated effects. For the augmented TWFE+AR(1), its
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Figure 2: Joint distribution of X - Monte Carlo, random coefficients

Oracle Param Kernel Mixture

Notes: DGP: Non-normal, a; £ &; | Yio, 0;; ~ AR(2). Case 3: (ps1,ps2) = (0.5, 0.2). Initial means:
E[d;0] = 3, E[d;1] = 1.5.

estimated mean path aligns closely with the true mean pattern, but it is not able to capture
the cross-unit dispersion, and its 95% confidence bands are too narrow to reflect underlying
heterogeneity. In contrast, our empirical Bayes estimators efficiently combine information
across all units and flexibly adapt to each unit’s own response profile, and thus deliver
good estimates of the average treatment path and effectively capture the heterogeneity in
dynamics.

Table 2 reports the rejection rates over 100 simulations for three tests regarding the
heterogeneity pattern. As described in Section 4.2, Test 1 checks for random versus correlated
random coefficients, Test 2 for the joint independence of §;; against (o, Yio), and Test 3 for
the state dependence in the treatment effect processes.

The table is partitioned into three blocks. The left block reports rejection rates under
a random coefficients DGP in which «; L 6; | Yo, satisfying the null hypotheses of Tests
1 and 2. The middle block corresponds to a random coefficients DGP with a; £ §; | Yo,
which satisfies Test 1’s null but violates Test 2’s. The right block is based on a correlated
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Figure 3: Joint distribution of X - Monte Carlo, correlated random coefficients

Oracle Param Kernel Mixture

Notes: DGP: Non-normal, a; £ &; | Yio, 0;; ~ AR(2). Case 3: (ps1,ps2) = (0.5, 0.2). Initial means:
E[d;0] = 3, E[d;1] = 1.5.

random coefficients DGP with «; £ §; | Yo, violating the nulls of both Tests 1 and 2. Within
each block, columns give results for Cases 1-4: no AR, AR(1), monotonic AR(2), oscillatory
AR(2), where Case 1 conforms to Test 3’s null and Cases 2-4 lie under its alternative.
Together, the blue entries indicate the size of the tests, while the black entries show their
power. Under the null hypotheses, all tests maintain size close to the nominal 5 % level, with
rejection rates between 0.04 and 0.06.8 Under the alternative hypotheses, the power is 1.00,
possibly due to the relatively large sample size with N = 1000 and 7" = 10. Therefore, these
tests provide a reliable means of diagnosing the heterogeneity pattern and state dependence
structure. In particular, these tests allow us to assess whether treatment effect dynamics are

driven primarily by unobserved baseline heterogeneity or by the initial treatment impact.

80ne observed size of 0.02 likely reflects Monte Carlo noise with only 100 repetitions.
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Figure 4: Event study with time-varying treatment effects - Monte Carlo

Oracle Param Kernel Mixture TWFE TWFE + AR(1)
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Notes: DGP: Non-normal, CRC, «; £ §; | Yio, d;; ~ AR(2). (ps,1,p52) = (0, 0) in Case 1, (0.3, 0) in Case
2, (0.5, 0.2) in Case 3, (0.75, -0.25) in Case 4. E[d;0] = 3, E[d;1] = 1.5. TWFE and TWFE+AR(1): bars
indicate 95% CI, clustered s.e. by unit.

6 Empirical example: recession and unemployment

6.1 Data and sample

Understanding how recessions shape local labor markets is crucial for designing targeted
policy responses. The 2008 Great Recession led to a nationwide spike in unemployment,
peaking at nearly 10% in October 2009, and ushered in a protracted recovery that saw the
national rate fall back to pre-crisis levels only by late 2015.° However, aggregate figures
mask substantial variation across regions: some counties experienced sharp spikes, while
others bore delayed and milder losses. For example, Yagan (2019) documents long-lasting
employment and earnings losses for harder-hit areas, and Hershbein and Stuart (2020) further
show that those areas also experienced persistent population declines.

In this empirical example, we exploit county-level unemployment data to map these

heterogeneous responses over time. Our outcome, Y}, is the annual unemployment rate for

9See the BLS website, such as https://www.bls.gov/spotlight/2012/recession/pdf/recession_
bls_spotlight.pdf and https://www.bls.gov/news.release/archives/empsit_01082016.pdf
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Table 2: Rejection rates of tests - Monte Carlo

RC, (073 1 51 | }/iO RC, (673 ,K (51 | }/i[) CRC, (073 7[ 52 | Y;O
Case 1 2 3 4 1 2 3 4 1 2 3 4
Test 1 0.04 0.04 0.04 0.06 | 0.06 0.06 0.05 0.04|1.00 1.00 1.00 1.00
Test 2 0.05 0.06 0.04 0.06 | 1.00 1.00 1.00 1.00| 1.00 1.00 1.00 1.00
Test 3 0.04 1.00 1.00 1.00 | 0.03 1.00 1.00 1.00|0.02 1.00 1.00 1.00

Notes: DGP: Non-normal, §;; ~ AR(2). (ps.1,ps52) = (0, 0) in Case 1, (0.3, 0) in Case 2, (0.5, 0.2) in Case
3, (0.75, -0.25) in Case 4. Initial means: E[d;o] = 3, E[d;1] = 1.5. Blue entries: size; black entries: power.
Based on robust s.e.

Table 3: Common parameter estimates by QMLE - recession and unemployment example

Est.  SD Est.  SD
py 0845 (0.010) | 03 0.431 (0.103)
psi 0306 (0.011) | o2 0.276 (0.094)
ps2 -0.061 (0.011)

county 7 in year t. We define the onset of the Great Recession as 2008, assigning it to
period ¢ty = 5 within a ten year window. The sample spans 2003-2013 (7" = 10) across
N = 3142 U.S. counties, capturing five pre- and five post-recession years. The county-
level not seasonally adjusted unemployment rates are obtained from the Bureau of Labor
Statistics (BLS) website, and we aggregate the monthly data to an annual frequency by time
averaging.

This panel event study analysis allows us to estimate county-specific dynamic effects
while controlling for unobserved heterogeneity and serial dependence, thereby shedding light

on both the immediate and persistent impacts of the recession across diverse local economies.

6.2 Results

In this section, we focus on the estimator under the AR(2) specification for ¢;;. Analogous
results for the AR(1) case and models with time fixed effects are provided in the online
appendix.

In Table 3 for common parameter estimates, the estimated persistence in the unemploy-
ment rate is high and significant with py = 0.845, so the omitted variable bias could be
substantial for the traditional TWFE regression. The AR(2) dynamics of the recession-
ary effect are likewise significant with ps; = 0.306 and ps2 = —0.061, indicating a damped
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Figure 5: Joint distribution of XZ - recession and unemployment example
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oscillatory decay in local labor market responses.

Figure 5 presents the heatmaps of the joint distributions of empirical Bayes posterior
means across the parametric, kernel, and mixture estimators. All three estimators yield
qualitatively similar density shapes. The heatmaps also reveal strong non-Gaussian hetero-
geneity with asymmetric mass and possible heavy tails rather than simple elliptical contours.
In the first two rows, counties with higher baseline heterogeneity «; tend to exhibit larger
initial effects (d;0, 0;1), indicating that areas already suffering from high unemployment were
hit hardest by the recession. The third row shows a strong positive correlation between
0;0 and 9;1, reflecting persistent temporal dynamics in treatment responses. These irregular
patterns underscore the value of the flexible empirical Bayes methods for jointly modeling
(cvi, 00, 0;1) and uncovering the rich heterogeneity across counties.

Figure 6 plots county-specific event study estimates of the time-varying treatment effects.
As seen in the joint distributions, all three empirical Bayes estimators produce qualitatively
similar trajectories. The individual curves reveal stark heterogeneity: some counties suffered

a dramatic jump in unemployment of over 7 percentage points in 2009, others experienced
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Figure 6: Event study w. time-varying treatment effects - recession & unemployment example
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Notes: TWFE and TWFE+AR(1): bars indicate 95% CI, clustered s.e. by unit.

Table 4: Tests - recession and unemployment example

Test stat Crit. val. Reject?

Test 1 672.6 5.99 Y
Test 2 766.7 9.49 Y
Test 3 1069.2 5.99 Y

Notes: Based on QMLE estimates with robust s.e. Test 1: Hy: by = 0; Test 2: Hy: by =0, X 12 = 0; Test
3: Hy: ps1 = ps2 = 0. Critical values: 5% level.

only modest rises of around 0.5 points, and a few even registered slight declines in the
initial recession year 2008. These spikes and the varied post-2008 decay profiles far exceed
the average effect implied by the TWFE model. In particular, the baseline TWFE yields
pre-2008 coefficients that are significantly different from zero, indicating substantial omitted
variable bias from ignoring the serial dependence of unemployment.

Finally, Table 4 formally tests three key modeling assumptions: see Section 4.2 for a
more detailed description of the tests. The rejections of all three tests reveal several key
features of the Great Recession’s impact on U.S. local labor markets. First, rejecting the
pure random coefficients null (Test 1) shows that the unobserved heterogeneity, including
the treatment effects, is not idiosyncratic but instead systematically related to county char-
acteristics: places with higher pre-crisis unemployment were hit especially hard. Second,
the rejection of the joint independence null (Test 2) confirms a strong link between baseline
heterogeneity and dynamic responses, indicating that local labor market resilience or vul-
nerability cannot be treated as exogenous. Finally, ruling out the no state dependence null
(Test 3) demonstrates that the recessionary impact on local labor markets is not a one-off hit

but unfolds dynamically, with early effects shaping subsequent recovery or further distress.
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Together, these results highlight the inadequacy of homogeneous static TWFE specifications

and validate the need for our dynamic heterogeneous panel framework.

7 Conclusion

In summary, our paper makes three key contributions. First, we demonstrate how omitting
predetermined variables can severely bias event study estimates, and we introduce a semi-
parametric dynamic panel model with correlated random coefficients that simultaneously
captures outcome persistence and treatment effect heterogeneity. Second, we develop a two-
step estimator—QMLE for common parameters followed by an empirical Bayes correction
for unit-specific effects—that is easy to implement and achieves oracle risk performance. Fi-
nally, our analysis offers new insights into standard event study assumptions, including no
anticipation, homogeneous treatment effects across treatment timing cohorts, and state de-
pendence structure, making it easier to diagnose and address potential violations in empirical
research.

The potential applications of our method extend to any setting with short panel data
where we are interested in the dynamics of the heterogeneous treatment effects. In corporate
finance, it can revisit classic event studies of earnings announcements, mergers, or regulatory
changes, allowing for firm-level persistence and heterogeneous responses. In public policy,
it can evaluate staggered social program roll-outs, uncovering differential impacts across
communities or demographic groups. Likewise, research in health, education, environmen-
tal policy, labor markets, and macroprudential regulation can potentially benefit by using
our semiparametric, shrinkage-based estimator to produce more accurate estimates of how

treatment effects evolve over time.
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A Proofs

A.1 Identification

Proof of Theorem 2.1. We prove identification in two steps, building on the approach
of Arellano and Bonhomme (2012). First, we establish identification of the parameters
p = (py,ps)'. Second, given identified p, we show that the conditional density 7(\; | Yio) is

identified via characteristic function deconvolution.

Step 1: Identification of common parameters p. Under Assumption 2.1 for model
setup, we identify p via the following moment conditions.

First, for the autoregressive parameter py, under Assumption 2.3, ¢, > 3 provides at
least two pre-treatment periods, and the moment condition for py is

N to—1
1

E N Z Z(Yit —pyYier =Y+ Y)Y | =0,

i=1 t=1

where Y, = N1 Zf\il Y helps remove the individual levels «;. Assumption 2.2(c) ensures
Var(Y;o) > 0, and thus this moment condition is non-degenerate.

Second, for treatment effect persistence ps, using treatment and post-treatment periods
t > ty, we exploit the autoregressive structure of d;;. Let 57@'1‘, =Y — pyYis—1 denote the

transformed outcome. The moment condition is:

N

1 T
T2 D YaYi

=1 t=to+1

E = p5E

1 N T _
vy Y]

=1 t=to+1

Under Assumption 2.3, the condition 7" — ¢y > J > 1 ensures sufficient post-treatment
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observations. Moreover, Assumption 2.2(c) ensures Var(d;p) > 0, and thus this moment

condition is non-degenerate.

Step 2: Identification of 7(); | Yjo) given identified p. Having identified p in Step 1, we
now verify the conditions of Theorem 2 in Arellano and Bonhomme (2012) for deconvolving
the conditional density 7(\; | Yio). The true composite error U;1.7(pso) has the MA(J)

structure

Uzt P6 0 zt + Z Z p§0 Ztgzk

j=0 k=1

First, for their Assumption 1 (Mean independence) and Assumption 3 (Conditional in-
dependence), our simple model with common treatment timing ¢, together with Assumption
2.1(b) ensures that E[Uit(p(g,o) | Ai, Yio] = 0 and Uit(p570) L X | Yio. Since W;(psp) is deter-
ministic and identical across units, we omit it from the conditioning set.

Second, for their Assumption 4 (Non-vanishing characteristic functions), our Assumption
2.2(a) directly imposes that the characteristic functions of \; | Yjo, Uy, and ¢;; are non-
vanishing almost everywhere, which extends to Uy (pp).

Third, for their Assumption 5 (MA structure), the key insight is that our composite
error involves exactly m = 2 fundamental variance components from U;; and ¢;;, given the
model structure in (1) and (2). Following from Assumption 2.2(a,b), the hessian of the log

characteristic function of Uy (pg) exists almost everywhere. The hessian can be decomposed

02108 Vi, (o) ()
vec ( 5 = Sw(T),

as

for 7 € RT, where w(7) = (wy(7),w-(7)) with

0?log Wy (1) ~ 9%log U (7)
T =T

wy(T) =

The selection matrix S = S({ D7}, ps0) encodes the treatment pattern and MA lag structure.
Fourth, for their rank condition in equation (24), rank(M;S) = m = 2, where M; =
Ir> — (W; @ W)[(W; @ W) (W; @ W) H(W; @ W) projects out the design matrix effect.

Here we suppress the dependence on pg for notational simplicity. To illustrate, consider the
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minimal case T = 4, t, = 3, J = 1. The variance-covariance matrix of U; ;.4 is

o2 0 0 0
0 0% 0 0

and the selection matrix S is 16 X 2 and encodes how (0%, 02) contribute to vec(X;). The

design matrix is

1 0
1 0
1 1
L1+ psp
One can verify that rank(M;S) = 2 and satisfying the identification condition.

More generally, under Assumption 2.3, ¢, > 3 provides sufficient pre-treatment and treat-
) _da(da+1)
2

ment periods to satisfy the degrees of freedom bound m = 2 < to(t;“ where d) = 2:
see Remark 3 and equation (27) in Arellano and Bonhomme (2012). Then, the projection
matrix M; removes the variation attributable to the heterogeneous parameters )\;, leaving
sufficient variation from the two variance components (07, 02) to achieve identification, and
the rank condition rank(M;S) = 2 holds.

Unlike standard applications, our design matrix W;(p) depends on unknown p. Our two-
step approach resolves this because the identification of p in Step 1 uses only the covariance

structure of the data and does not require knowledge of m(\; | Yo).

Finally, we have the sufficient statistic representation

o~

Ai(po) = Wilpo) " (Yiar — pyoYior—1) = Ni + Vi(po),

where V;(po) = Wi(po)TUi1.r(po) is the projection noise. Since the conditions of Theo-
rem 2 in Arellano and Bonhomme (2012) have been verified above, characteristic function

deconvolution yields

Uy (7 | Yio) = Y010 (7 | Yio)
ilYi 0) =
0 Wy (1)
for 7 € R?, and the conditional density is recovered via inverse Fourier transform. [
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A.2 QMLE

Proof of Theorem 3.1. As defined in the main text, 8 = (py, ps, 0%, 02) denotes the
common parameters, and n = (0', b, b}, vech(3,)’)" collects both the common parameters

and Gaussian random effects parameters. Recall that the marginal quasi-log-likelihood is

() = 5 10g100) | — 5 37 (Viar — () )™ Yiar — ), (A1)

i=1

wi(n) = wilpy, ps,bo, b1) = A(py)Yio + W(P% ps)(bo + b1Y50),
Q) = Upy, ps, 0%, 02, 52) = Bloy) S (ps, 0%, 02) B(py) + W (py, ps)SaW (py, ps)s

A()OY) = (pY7p%/7p§’/7 e 7p$)/7

1 0 o --- 0
1% 1 0 0
2

Wpy, ps) = B(py)W (ps).

Let s = 0ly/0n denote the score. We now show that under correct conditional mean
and covariance, the QMLE satisfies E [s(no) | Yio] = 0 at the true parameter values.
(i) Random effects mean parameters b, and b;. These derivatives only involve the

mean.

ov
Spy = 81)](\)[ Z W ,OY, Pé ) 1(Yz‘,1;T - Mi(’?))a
=1
ol N
Spy = 8_b]j = Z W(PY; P(S)/Q(U)fl(yé,l;:r - Mi(n))yh
i=1

Since E[Y; 1.7 — pi(no) | Yio] = 0, we have E[sy, (10) | Yio] = 0 and E[sy, (10) | Yio] = 0.
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(ii) Covariance parameters 6, = (07,02, vech(X,)’)". These derivatives only involve the

covariance matrix. There are five parameters in 6,. For k =1,... 5,
o Ol
b = 890&
N o9 1 o9
= ——tr |Q(n)~* - Yo — pi(n)Qn) Q) (Yiir — wi(n)).
2 [ G 0]+ S0~ ) G ) Yo — )

As E[2'Az| = tr(AVar(x)) for © ~ (0, Var(x)) and Var(Y; 1.0 — wi(no) | Yio) = Q(no), the
second term cancels out the first term, and we have E[sq_, (m0) | Yio] = 0.
(iii) Dynamic parameters p; and py. These derivatives combine both the mean and

covariance matrix. For py € {ps, py },

N

Al OW (py,ps) . 4 N l L 090 ]
= ON NIV P g Yirr — 11s(n) (bo + b1 Yio) + — —tr [Q(n) 122
= ; D00 Yo = i) (b0 + by 0), St (nv) AL
it @
1 Y IQ —1 aQ Q —1
+ 5 DYV — () Q(n) o, MU Vier = (1)
=1
3

where the (1) is from the mean and E[(1) | Yio] = 0 by a similar argument as in part (i),
and the (2) and (3) are from the covariance matrix and E[(2) + (3) | Yio] = 0 by a similar
argument as in part (ii). Note that for py, there is Nickell bias for conditional likelihood,
but not for the marginal likelihood here.

Combining parts (i)—(iii), every component of the quasi-score s(n) has zero expectation
under the true DGP, as long as the first two conditional moments are correctly specified.
Finally, under Assumptions 2.1-2.3 and 3.1, the strictly concave quasi-log-likelihood and
pointwise LLN yield consistency by the argmax theorem, and a Taylor expansion of the

score around the true parameter together with the CLT establishes asymptotic normality. m

A.3 Ratio optimality

We adopt Assumptions 3.2-3.6 of Liu, Moon, and Schorfheide (2020), restated as in our

setting as follows. First, define the slowly diverging sequence as follows.

Definition A.1 (Slowly diverging sequences)
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(a) An(T) = 04 (N€) for some € > 0, if there exists a sequence ny — 0 that does not
depend on m € II such that N~ “Ay(m) < ny.

(b) An(m) = o(NT), if for every e > 0, there exists a sequence ny(e) — 0 such that
N=An(m) < nn(e).

(¢) An(T) = 0ux(NT), if for every e > 0, there exists a sequence ny(€) — 0 that does not
depend on w € 11 such that N~ “An(m) < ny(e).

Intuitively, (a) holds for some e and uniformly in 7, (b) holds for every e but only pointwise

in 7, and (c¢) holds for every e uniformly in 7.

Assumption A.1 (Trimming and bandwidth)

(a) The truncation sequence Cy satisfies Cy = o(NT) and Cy > (2log N)/Ms.

(b) The truncation sequence C'y satisfies Cly = Cy + +/(20%21log N)/T.
(c) The bandwidth sequence By is bounded by By < By < By, where 1/B3, = o(N7),

Bn(Cy + C%) = o(1), and the bounds do not depend on the observed data or my € II.

Assumption A.2 (CRC distribution: tails) There ezist constants 0 < My, My, M3, My <

oo such that for the true distribution my € I1:
(@) [izjsc To(NdA < Mye™2C7M5) Cand [ |[A|[*70(A)dA < My,

(0) [yozc To(y0)dyo < Myem =M Cand [ ygmo(yo)dyo < Ma.

To estimate the unknown prior nonparametrically, we trim off very large \; so our kernel
estimates do not explode in the tails, but let the trimming threshold Cy grow slowly with
N. The exponential tail bound on the prior guarantees little mass beyond Cy. Meanwhile,
the kernel bandwidth By shrinks just fast enough to capture local features of the prior, but
not so fast that variance dominates bias. Together, these conditions balance trimming and

smoothing so the leave-one-out density p(_; is consistent.

Assumption A.3 (CRC distribution: boundedness and smoothness) The conditional
density mo(yo | A) is uniformly bounded and

- / 6 (5522) moly | Ndy / molyo | A) - 1' = o(1),
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where sequences Cy, C', and By satisfy Assumption A.1.

We need the conditional density my(yo | A) to be smooth on the trimmed region, so that
convolving it with our Gaussian kernel does not distort its shape substantially. This prevents
spikes or point mass priors on Yjy | \;, ensuring the leave-one-out smoothing step yields a
valid approximation to the true prior.

The posterior mean function and the joint sampling distribution of the sufficient statistic

and the initial condition take the form

N N ) N
m(A, Yo; o) = A+ Z\/(90)5 log p(A, yo; o),

PNETRE N 1 —1/2(Y _ -
P()\,yo, 0) / det(zv(eo))gb <Zv(90) ()\ )\)) O(A,yo)d)\.

Also define the following *-counterparts by convolving the prior my(A, yo) with a Gaussian
kernel with bandwidth By. These *-objects are the population targets of the expected

leave-one-out kernel estimator
m*(/):, Yo; To, BN)
- ) o N
= A+ (Sv(80) + BYI) —=1ogp.(A yoi o, Bw),

p.(\, o0; ™0, B)
1 / 1
B ) /det(Sy(6o) + B3)

o (20 + BRD (A=) ¢ (y“gf(’) o, o) dAdfo

Assumption A.4 (Posterior mean functions) Let Cy be a sequence satisfying Assump-

tion A.1. The posterior mean functions satisfy:

(a) N// m(), yo;7ro)”2 1{ (m@ yo%%)H > Cw}p(X, Yo; T0) Yy = 0y mg (N,

~ 2 ~ ~ ~
(b) N// m*()\,yo;WO,BN) 1 {Hm*()vyo;Wo,BN)H > CN}p()vyo;Wo)d)\dyo = Ou.no(N+)>

~ 2 ~ ~ ~
() N [ [ i) | 1 {8 )| 2 C} B o, B = oy (),

This assumption guarantees that outside a slowly growing ball of radius Cy, the contribution
to the overall risk is negligible. In other words, only a vanishing fraction of units have such

extreme estimates that they could undermine our uniform risk bound. We check this not
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only for the posterior mean m and density p, but also for the variance inflated versions

(m*, p*) that arise from adding the kernel variance B%.

Assumption A.5 (Rates for 5) The estimator for the common parameters satisfies

]Eeoﬂfo [‘m(ﬁy - pY,O)

4] = 0uno(NT),  Egym, “\/N(aﬁ - UQU,O)‘Q] = Oung(N'1),

and similarly for ps,o2.

Finally, we require our estimator of the common parameters to converge at the usual v/ N-rate
with sufficiently thin tails. This ensures that plugging 0 into our empirical Bayes update does
not introduce any first-order errors in the risk comparison against the oracle. By Theorem

3.1, our QMLE estimator attains the required v/ N-rate and thus fulfills this assumption.

Proof of Theorem 3.2. In the simple model under Assumption 2.3 (rank condi-
tion), the common treatment timing design W;(ps) in (4) is deterministic and satisfies
Wi(ps) Wi (ps) invertible with finite eigenvalues. Hence, the Moore-Penrose inverse W, (ps) =
(Wi(ps)Wi(ps))*Wi(ps)' exists and the sufficient statistic Xl(p) =W (ps) (Yirr — PyYior—1)
in (5) is well defined. Following from (3), the covariance of the stacked innovations () is
positive semidefinite. Then, the projection noise covariance Sy.;(6g) = W;* (ps) S (60) [Wi (p5)]’
is well defined with finite eigenvalues.

Since W;(ps) is deterministic and common across ¢ in the simple model, we follow the
proof strategy in Liu, Moon, and Schorfheide (2020), which instead focuses on individual fore-
casts. Under Assumptions A.1-A.5 governing trimming/bandwidth, CRC tails/smoothness,
posterior mean functions, and v/N-rates for the common parameters, we obtain the ratio
optimality for the jointly estimated individual effects «; and heterogeneous treatment effects

5i0~ |

Remark A.1 (Extension: rich controls C;) Consider the extension in Section 4.1 with
a conditional prior w(\; | C;), where C; = (Yio, 2050, XG0, X8) , 22 collects treatment
timing and size (w.l.o.g. we consider continuous treatment here), X i?O:T are strictly exogenous
covariate paths, and X} are initial values of predetermined covariates. Now W;(ps) =
W (ps, C;) and Xy,;(0) = Xy (6, C;) are functions of C;.

Assume that W (ps0, C;) has full column rank with the eigenvalues uniformly bounded

away from zero over trimmed C;. Following from the continuity of W (ps, C;) in ps uniformly
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over trimmed C}, there exists a compact neighborhood psy € ©, and a constant 0 < ¢ < 0o
such that
inf )\min (W(pzSa Ci)IW(p57 Cz)) > C,

ps€O,, trimmed C;
so W (ps, C;) is well-defined uniformly over ps € ©, and trimmed C;. Similarly, the covari-
ance mapping Xy (6, C;) is smooth in 6 uniformly over a compact neighborhood of 6, and
trimmed C;.
With this in place, replace Y;g by C; throughout Assumptions A.1-A.5. The Tweedie

step and the ratio optimality argument then carry over verbatim, now conditional on C;.
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