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Abstract

This paper constructs individual-specific density forecasts for a panel of firms or households

using a dynamic linear model with common and heterogeneous coefficients as well as cross-

sectional heteroskedasticity. The panel considered in this paper features a large cross-sectional

dimension N but short time series T . Due to the short T , traditional methods have difficulty in

disentangling the heterogeneous parameters from the shocks, which contaminates the estimates

of the heterogeneous parameters. To tackle this problem, I assume that there is an underlying

distribution of heterogeneous parameters, model this distribution nonparametrically allowing

for correlation between heterogeneous parameters and initial conditions as well as individual-

specific regressors, and then estimate this distribution by combining information from the whole

panel. Theoretically, I prove that in cross-sectional homoskedastic cases, both the estimated

common parameters and the estimated distribution of the heterogeneous parameters achieve pos-

terior consistency, and that the density forecasts asymptotically converge to the oracle forecast.

Methodologically, I develop a simulation-based posterior sampling algorithm specifically address-

ing the nonparametric density estimation of unobserved heterogeneous parameters. Monte Carlo

simulations and an empirical application to young firm dynamics demonstrate improvements in

density forecasts relative to alternative approaches.
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1 Introduction

Panel data, such as a collection of firms or households observed repeatedly for a number of periods,

are widely used in empirical studies. It can also be useful for forecasting individuals’ future outcomes,

which is interesting and important in many applications, for example, PSID for income dynamics

(Hirano, 2002; Gu and Koenker, 2017b) and bank balance sheet data for bank stress tests (Liu et al.,

2020). This paper constructs individual-specific density forecasts using a dynamic linear panel data

model with common and heterogeneous coefficients as well as cross-sectional heteroskedasticity.

In this paper, I consider young firm dynamics as the empirical application. For illustrative

purposes, consider a simple dynamic panel data model as the baseline setup:

yit︸︷︷︸
performance

= βyi,t−1 + λi︸︷︷︸
skill

+ uit︸︷︷︸
shock

, uit ∼ N
(
0, σ2

)
, (1)

where i = 1, · · · , N , and t = 1, · · · , T + 1. yit is the observed firm performance such as log

employment, λi is the unobserved skill of an individual firm, and uit is an i.i.d. shock. Skill is

independent of the shock, and the shock is independent across firms and times. β and σ2 are

common across firms, where β represents the persistence of the dynamic pattern and σ2 gives the

size of the shocks. Based on the observed panel from period 0 to period T , I am interested in

forecasting the future performance of any specific firm in period T + 1.

The panel considered in this paper features a large cross-sectional dimension N but short time

series T . For instance, the number of observations for each young firm is restricted by its age.

Good estimates of the unobserved skill λi facilitate good forecasts of yi,T+1. Because of the short

T , traditional methods have difficulty in disentangling the unobserved skill λi from the shock uit,

which contaminates the estimates of λi, even if N goes to infinity.

To tackle this problem, I assume that λi is drawn from an underlying skill distribution f and

estimate this distribution by combining information from the whole panel. In terms of modeling

f , the parametric Gaussian density misses many features in real-world data, such as asymmetry,

heavy tails, and multiple peaks. For example, as good ideas are scarce, the skill distribution of

young firms may be highly skewed. This calls for a flexible modeling of f , and here I estimate f via

a nonparametric Bayesian approach where the prior is constructed from a mixture model and allows

for correlation between λi and the initial condition yi0 (i.e. a correlated random effects model).

Conditional on f , we can treat it as a prior distribution and combine it with firm-specific data

to obtain the firm-specific posterior via Bayes’ theorem. In a special case where the common

parameters are
(
β, σ2

)
= (0, 1), the firm-specific posterior is

p (λi |f, yi,0:T ) =
p (yi,1:T |λi) f (λi |yi0 )∫
p (yi,1:T |λi) f (λi |yi0 ) dλi

.

This firm-specific posterior helps better infer the firm-specific unobserved skill λi and better fore-
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cast the firm-specific future performance, thanks to the estimated underlying distribution f that

integrates the information from the whole panel in an efficient and flexible way. This is only an

intuitive explanation of why the skill distribution f is crucial. In the actual implementation, the

correlated random effect distribution f , common parameters
(
β, σ2

)
, and firm-specific skill λi are

all inferred simultaneously.

It is natural to construct density forecasts based on the firm-specific posterior. In general, fore-

casting can be done in a point, interval, or density manner, with density forecasts giving the richest

insight into future outcomes. By definition, a density forecast provides a predictive distribution of

firm i’s future performance and summarizes all sources of uncertainties; hence, it is preferable in the

context of young firm dynamics and other applications with large uncertainties and nonstandard

distributions. In particular, for the baseline model in (1), the density forecasts reflect uncertainties

arising from the future shock ui,T+1, unobserved individual heterogeneity λi, and estimation uncer-

tainty of common parameters
(
β, σ2

)
and of skill distribution f . Moreover, once density forecasts

are obtained, one can easily recover point and interval forecasts.

The contributions of this paper are threefold. First, I establish the theoretical properties of

the proposed predictor when the cross-sectional dimension N tends to infinity. To begin, I provide

conditions for identifying the common parameters and the distribution of the individual hetero-

geneity in both cross-sectional homoskedastic and heteroskedastic models. Then, I prove that the

proposed estimator achieves posterior consistency in cross-sectional homoskedastic cases. Compared

with previous literature on posterior consistency in density estimation problems, there are several

challenges in the panel data framework: (1) a deconvolution problem disentangling unobserved in-

dividual effects and shocks, (2) an unknown common shock size in cross-sectional homoskedastic

cases, (3) strictly exogenous and predetermined variables (including lagged dependent variables) as

covariates, and (4) correlated random coefficients addressed by flexible conditional density estima-

tion. Based on the posterior consistency of the estimates, the discrepancy between the proposed

density predictor and the oracle is arbitrarily small asymptotically. The oracle predictor is an (in-

feasible) benchmark defined as the individual-specific posterior predictive distribution, assuming

known common parameters and a known distribution of the heterogeneous parameters.

Second, I develop a posterior sampling algorithm specifically addressing nonparametric density

estimation of the unobserved individual effects. For a random coefficients model, which is a special

case where the individual effects are independent of the conditioning variables, the f part becomes

an unconditional density estimation problem. I adopt a Dirichlet Process Mixture (DPM) prior for

f and construct a posterior sampler building on the blocked Gibbs sampler proposed by Ishwaran

and James (2001, 2002). For a correlated random coefficients model, I further adapt the proposed

algorithm to the much harder conditional density estimation problem using a probit stick-breaking

process prior suggested by Pati et al. (2013).

Third, Monte Carlo simulations demonstrate improvement in density forecasts relative to alter-

native predictors with various parametric priors on f , evaluated by the log predictive score. An

2



application to young firm dynamics also shows that the proposed predictor provides more accurate

density predictions. The better forecasting performance is largely due to three key features (in order

of importance): the nonparametric Bayesian prior, cross-sectional heteroskedasticity, and correlated

random coefficients. The estimated model also helps shed light on the latent heterogeneity structure

of firm-specific coefficients and cross-sectional heteroskedasticity, as well as whether and how the

unobserved heterogeneity depends on the initial condition of the firms.

Moreover, the proposed method is applicable beyond forecasting. Here estimating heterogeneous

parameters is important because we want to generate good individual-specific forecasts, but in other

cases, the heterogeneous parameters themselves could be the objects of interest. For example, the

technique developed here can be adapted to infer individual-specific treatment effects.

Related Literature First, this paper contributes to the literature on individual forecasts in a

panel data setup, and is closely related to Liu et al. (2020) and Gu and Koenker (2017a,b). Liu

et al. (2020) focus on point forecasts. They utilize the idea of Tweedie’s formula to steer away

from the complicated deconvolution problem in estimating λi and establish the ratio optimality

of point forecasts. Unfortunately, the Tweedie shortcut is not applicable to the inference of the

underlying λi distribution and therefore not suitable for density forecasts. In addition, this paper

addresses cross-sectional heteroskedasticity where σ2
i is an unobserved random quantity, while Liu

et al. (2020) incorporate cross-sectional and time-varying heteroskedasticity via a deterministic

function of observed conditioning variables.

Gu and Koenker (2017b) address the density estimation problem, but with a different method.

This paper infers the underlying λi distribution via a full Bayesian approach (i.e. adopting a prior

on the λi distribution and updating the prior belief by the observed data), whereas they employ an

empirical Bayes approach (i.e. choosing the λi distribution by maximizing the marginal likelihood of

data). In principle, the full Bayesian approach is preferable for density forecasts, as it captures all

sources of uncertainties, including estimation uncertainty of the underlying λi distribution, which

has been omitted by the empirical Bayes approach. In addition, this paper features correlated

random coefficients allowing the cross-sectional heterogeneity to interact with the initial conditions,

whereas Gu and Koenker (2017b) focus on random effects models without this interaction.

In their recent paper, Gu and Koenker (2017a) also compare their method with an alternative

semiparametric Bayesian estimator featuring a Dirichlet Process (DP) prior under a set of fixed

scale parameters. There are two major differences between their DP setup and the DPM prior used

in this paper. First, the DPM prior provides continuous individual effect distributions, which could

be the case in many empirical setups. Second, unlike their set of fixed scale parameters, this paper

incorporates a hyperprior for the scale parameter and updates it via the observed data, hence let

the data choose the complexity of the mixture approximation, which can essentially be viewed as

an “automatic” model selection.

Earlier works on full Bayesian analyses with parametric priors on λi can be found in Lancaster
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(2002) (orthogonal reparametrization and a flat prior); Chamberlain and Hirano (1999), Chib and

Carlin (1999), and Sims (2000) (Gaussian prior); and Chib (2008) (student-t and finite mixture

priors). There have also been empirical works on the DPM model with panel data, but they mostly

focus on empirical studies rather than theoretical analyses. For example, Hirano (2002) and Fisher

and Jensen (2021) use linear panel models with setups different from this paper. Hirano (2002)

considers flexibility in the uit distribution instead of the λi distribution. Fisher and Jensen (2021)

assume random effects instead of correlated random effects. Burda and Harding (2013) and Rossi

(2014) use a panel probit model and a panel logit model, respectively.

In the frequentist literature, Li and Vuong (1998), Delaigle et al. (2008), Evdokimov (2010),

and Hu (2017), among others, have studied a similar deconvolution problem and estimated the λi

distribution. Also see Compiani and Kitamura (2016) for a review of frequentist applications of

mixture models. However, the frequentist approach misses estimation uncertainty, which matters

in density forecasts, as mentioned previously.

Second, this paper also relates to the literature on nonparametric Bayesian methods in den-

sity estimation problems (Ghosh and Ramamoorthi, 2003; Hjort et al., 2010; Ghosal and van der

Vaart, 2017). In particular, for unconditional density estimation, a recent paper by Canale and

De Blasi (2017) relaxed the tail conditions to accommodate multivariate location-scale mixtures.

For conditional density estimation, the mixing probabilities can be characterized by a multinomial

choice model (Norets, 2010; Norets and Pelenis, 2012), a kernel stick-breaking process (Norets and

Pelenis, 2014; Pelenis, 2014; Norets and Pati, 2017), or a probit stick-breaking process (Pati et al.,

2013). I adopt the Pati et al. (2013) approach and establish posterior consistency for a multivariate

conditional density estimator featuring infinite location-scale mixtures with a probit stick-breaking

process.

To account for deconvolution, I construct an inversion inequality that links the convergence of

the distribution of observables to the convergence of the distribution of the unobserved individual

heterogeneity. The latter is in the Wasserstein metric, which is useful in handling deconvolution

problems as found in the recent literature. For example, Nguyen (2013) considers the unobserved

distribution on a discrete support, and Su et al. (2020) flexibly model a symmetric unimodal un-

observed distribution using a mixture of symmetric uniforms where the bounds are drawn from

a Dirichlet process location-mixture of Gammas. Their setups, however, differ from the current

framework, which calls for a new inversion inequality developed in this paper. Then, I further take

into account the dynamic panel data structure, as well as obtain the convergence of the proposed

predictor to the oracle predictor.

Last but not least, the empirical application in this paper also relates to the young firm dynamics

literature. Akcigit and Kerr (2018) document that R&D intensive firms grow faster, especially

for smaller firms. Robb and Seamans (2014) examine the role of R&D in capital structure and

performance of young firms. The empirical analysis of this paper builds on these findings. Besides

more accurate density forecasts, I also obtain the latent heterogeneity structure of firm-specific
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coefficients and cross-sectional heteroskedasticity.

The rest of the paper is organized as follows. Section 2 specifies the general panel data model,

density forecasts, and nonparametric Bayesian priors; Section 3 establishes the posterior consistency

of the estimates and the convergence of the density forecasts to the oracle; Section 4 conducts Monte

Carlo simulations; Section 5 presents the empirical application to young firm dynamics; and Section

6 concludes. Notations, proofs, algorithms, and additional results are in the Appendix.

2 Model

2.1 General Panel Data Model

The general panel data model with (correlated) random coefficients and potential cross-sectional

heteroskedasticity can be specified as

yit = β′xi,t−1 + λ′iwi,t−1 + uit, uit ∼ N
(
0, σ2

i

)
, (2)

where i = 1, · · · , N , and t = 1, · · · , T + h. Similar to the baseline setup in (1), yit is the observed

individual outcome, such as young firm performance. The main goal of this paper is to estimate the

model using the sample from period 0 to period T and forecast the future distribution of yi,T+h for

any individual i. In the remainder of the paper, I focus on the case where h = 1 (i.e. one-period-

ahead forecasts) for notational simplicity, and the discussion can be extended to multi-period-ahead

forecasts via either a direct or an iterated approach (Marcellino et al., 2006).

wi,t−1 is a vector of observed covariates that have heterogeneous effects on the outcomes, with

λi being the unobserved heterogeneous coefficients. wi,t−1 is strictly exogenous and captures key

sources of individual heterogeneity. If wi,t−1 = 1, λi is reduced to an individual-specific intercept,

e.g. firm i’s skill level in the baseline model (1). More generally, wi,t−1 can contain individual-specific

variables (e.g. firm-specific R&D) and aggregate variables (e.g. a recession dummy). I focus on the

former case below for notational simplicity. In the latter case, all theoretical analyses would be

further conditioned on the aggregate observations.

xi,t−1 is a vector of observed covariates that have homogeneous effects on the outcomes, and

β is the corresponding vector of common parameters. I decompose xi,t−1 =
[
xO′i,t−1, x

P ′
i,t−1

]′
, where

xOi,t−1 is strictly exogenous and xPi,t−1 is predetermined. One example of xPi,t−1 is the lagged outcome

yi,t−1 capturing the persistence. Both xOi,t−1 and xPi,t−1 can include other control variables, such

as firm characteristics and general economic conditions. Let xP∗i,t−1 denote the subgroup of xPi,t−1

excluding lagged outcomes, then xi,t−1 =
[
xO′i,t−1, x

P∗′
i,t−1, yi,t−1

]′
with β =

[
βO′, βP∗′, ρ

]′
. Here, the

distinction between homogeneous effects β′xi,t−1 and heterogeneous effects λ′iwi,t−1 helps model

the key latent heterogeneities while avoiding the curse of dimensionality. Combining information

from the covariates, the conditioning set at period t is defined as ci,t−1 =
(
xPi,0:t−1, x

O
i,0:T , wi,0:T

)
. We
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further define D =
(
{Di}Ni=1

)
, where Di = ciT , as the data used for estimation and the conditioning

set for posterior inference.

uit is an individual-time-specific shock characterized by zero mean and potential cross-sectional

heteroskedasticity σ2
i , with cross-sectional homoskedasticity being a special case where σ2

i = σ2. In

a unified framework, I denote the common parameters by ϑ, the individual heterogeneity by hi,

and the underlying distribution of hi by f . For instance, ϑ = β, hi =
(
λi, σ

2
i

)
under cross-sectional

heteroskedasticity. In many empirical applications, such as the young firm example, the size of

risk may vary over the cross-section, so cross-sectional heteroskedasticity could contribute to better

density forecasts.

As stressed in the motivation, the underlying distribution of individual effects is the key to

better density forecasts. In the literature, there are usually two types of assumptions on this

distribution. One is the random coefficients model, where the individual effects hi are independent of

the conditioning variables ci0 =
(
xPi0, x

O
i,0:T , wi,0:T

)
. The other is the correlated random coefficients

model, where hi and ci0 could be correlated. This paper considers both models while focusing on

the latter—although the former is more parsimonious and easier to implement, the latter is more

realistic for young firm dynamics as well as many other empirical setups. In practice, it is more

feasible to only take into account a subset of ci0 or a function of ci0 that is relevant for the specific

study.

2.2 Oracle and Feasible Predictors

This subsection formally defines the infeasible optimal oracle predictor and the feasible semipara-

metric Bayesian predictor proposed in this paper. Both definitions rely on the conditional predictor,

f condi,T+1 (y |ϑ, f,Di ) =

∫
p (y|hi, ϑ, wiT , xiT )︸ ︷︷ ︸

future shock

· p (hi |ϑ, f,Di )︸ ︷︷ ︸
individual heterogeneity

dhi, (3)

which provides the density forecasts of yi,T+1 conditional on the common parameters ϑ, underlying

distribution f , and individual i’s data Di. The first term p (y|hi, ϑ, wiT , xiT ) captures individual

i’s uncertainty due to the future shock ui,T+1. The second term

p (hi |ϑ, f,Di ) =

∏T
t=1 p (yit|hi, ϑ, wi,t−1, xi,t−1) f (hi |ci0 )∫ ∏T
t=1 p (yit|hi, ϑ, wi,t−1, xi,t−1) f (hi |ci0 ) dhi

is the individual-specific posterior. It characterizes individual i’s uncertainty due to unobserved

individual heterogeneity that arises from insufficient time-series information to infer individual hi.

The common distribution f helps regulate this source of uncertainty and hence contributes to

individual i’s density forecasts.

The infeasible oracle predictor is defined as if we knew all the elements that can be consistently

estimated. Specifically, the oracle knows the common parameters ϑ0 and the underlying distribution
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f0, but not the individual effects hi. Then, the oracle predictor is formulated by plugging the true

values (ϑ0, f0) into the conditional predictor in (3),

foraclei,T+1 (y |Di ) = f condi,T+1 (y |ϑ0, f0, Di ) .

In practice, (ϑ, f) are unknown and need to be estimated, thus introducing another source of

uncertainty. For the common parameters ϑ, I adopt a conjugate prior (e.g. mulitvariate normal

for cross-sectional heteroskedastic cases) in order to stay close to the linear regression framework.

For the distribution of individual heterogeneity f , I resort to the nonparametric Bayesian prior

(specified in the next subsection) to flexibly model this underlying distribution, which could better

approximate the true distribution f0, and the resulting feasible predictor would be close to the

oracle. Then, I update the prior belief using the observations from the whole panel and obtain

the posterior. The semiparametric Bayesian predictor is constructed by integrating the conditional

predictor over the posterior distribution of (ϑ, f),

fspi,T+1 (y |D ) =

∫
f condi,T+1 (y |ϑ, f,Di )︸ ︷︷ ︸
shock & heterogentity

· dΠ (ϑ, f |D )︸ ︷︷ ︸
estimation uncertainty

dϑdf.

The conditional predictor reflects uncertainties due to future shocks and unobserved individual het-

erogeneity, whereas the posterior of (ϑ, f) captures estimation uncertainty. Note that the inference

of (ϑ, f) combines information from the whole panel. Once conditioned on (ϑ, f), we have that

individuals’ outcomes are independent across i and that only individual i’s data are further needed

for its density forecasts.

2.3 Nonparametric Bayesian Priors

A prior on the distribution f can be viewed as a distribution over a set of distributions. Among

other options, I formulate the nonparametric Bayesian prior using mixture models, because mix-

ture models can effectively approximate a general class of distributions while being relatively easy

to implement. The specific functional form depends on whether f is characterized by a random

coefficients model or a correlated random coefficients model.

In cross-sectional heteroskedastic cases, I incorporate another flexible prior on the distribution

of σ2
i . Define li = log

σ̄2(σ2
i−σ2)

σ̄2−σ2
i

, where σ2 (σ̄2) is some small (large) positive number. This trans-

formation ensures that the support of fσ2 is bounded by
[
σ2, σ̄2

]
for numerical stability, whereas

the support of li is unbounded so a similar prior structures can be applied to both λi and li. We

assume λi and σ2
i are conditionally independent conditioning on ci0, so their mixture structures can

be modeled separately. For a concise exposition, I define a generic variable z that can represent

either λ or l, and include z in the subscript as an indicator. When there is no confusion, z and i in

the subscript are suppressed.
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2.3.1 Random Coefficients Model

In the random coefficients model, the individual heterogeneity zi (= λi or li) is assumed to be in-

dependent of the conditioning variables ci0, so the inference of the f part can be considered as

an unconditional density estimation problem, and then the DPM prior is a typical choice in the

nonparametric Bayesian literature. With component label k, component probability pk, and compo-

nent parameters (µk,Ωk), one draw from the DPM prior can be written as an infinite location-scale

mixture of normals,

zi ∼
∞∑
k=1

pkN (µk,Ωk) . (4)

Different draws from the DPM prior are characterized by different combinations of {pk, µk,Ωk},
which lead to different shapes of f . This is why the DPM prior is flexible enough to approximate a

wide range of continous distributions. The component parameters (µk,Ωk) are drawn from the base

distribution G0, which is chosen to be a conjugate multivariate-normal-inverse-Wishart distribution,

or a normal-inverse-gamma distribution for scalar zi. The component probability pk is constructed

via a stick-breaking process governed by the scale parameter α.

(µk,Ωk) ∼ G0, and pk ∼ ζk
∏
j<k

(1− ζj) , where ζk ∼ Beta (1, α) . (5)

The scale parameter α controls the number of unique components in the mixture density and thus

determines the flexibility of the mixture density. One advantage of the nonparametric Bayesian

framework is its ability to flexibly elicit the tuning parameter, such as α, from the data. Namely,

we can set up a relatively flexible hyperprior for α ∼ Ga (aα,0, bα,0) , and update it based on the

observations, which “automatically” chooses the complexity of the mixture structure.

2.3.2 Correlated Random Coefficients Model

To accommodate the correlated random coefficients model where the individual heterogeneity zi (= λi or li)

can be correlated with the conditioning variables ci0, it is necessary to consider a nonparametric

Bayesian prior that is compatible with the much harder conditional density estimation problem.

One issue is associated with the uncountable collection of conditional densities, and Pati et al.

(2013) circumvent it by linking the properties of the conditional density to the corresponding ones

of the joint density without explicitly modeling the marginal density of ci0. As suggested in Pati

et al. (2013), I utilize the Mixtures of Gaussian Linear Regressions (MGLRx) prior, a generalization

of the Gaussian-mixture prior for conditional density estimation, and extend it to the multivariate
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setup. Conditioning on ci0,

zi|ci0 ∼
∞∑
k=1

pk (ci0)N
(
µk
[
1, c′i0

]′
,Ωk

)
.

Similar to the DPM prior, the component parameters can be directly drawn from the base distribu-

tion, (µk,Ωk) ∼ G0. G0 is again specified as a conjugate matricvariate-normal-inverse-Wishart form

(or a multivariate-normal-inverse-gamma distribution for scalar zi). Now the mixture probabilities

are characterized by a probit stick-breaking process

pk (ci0) = Φ (ζk (ci0))
∏
j<k

(1− Φ (ζj (ci0))) , (6)

where stochastic function ζk is drawn from Gaussian process ζk ∼ GP (0, Vk) for k = 1, 2, · · · .
Rodŕıguez and Dunson (2011) demonstrate the flexibility and computational simplicity of the probit

stick-breaking prior.

This setup has three key features: component means are linear in ci0; component covariances

are independent of ci0; and mixture probabilities are flexible functions of ci0. This framework is

relatively parsimonious for finite sample implementation and, at the same time, general enough to

accommodate a broad class of conditional distributions. Intuitively, it is similar to approximating

the conditional density via Bayes’ theorem but does not explicitly model the distribution of the

conditioning variables ci0. The infinite mixture structure and flexible mixture probabilities could

absorb dependency on ci0, so we would not need further dependency of component means and

covariances on ci0 beyond the MGLRx specification (see details in the Appendix).

3 Theoretical Properties

In general, it is desirable to ensure that the prior belief does not dominate the posterior inference

asymptotically. For Bayesians with different prior beliefs, the asymptotic properties ensure that

they will eventually agree on similar predictive distributions (Blackwell and Dubins, 1962; Diaconis

and Freedman, 1986). For frequentists, the asymptotic properties can be viewed as a frequentist

justification for the Bayesian method—as the sample size increases, the updated posterior recovers

the unknown true data generating process (DGP). Also, the conditions for posterior consistency

provide guidance in choosing better-behaved priors.

In the context of infinite dimensional analysis such as density estimation, posterior consistency

cannot be taken as given—the null set for the prior can be topologically large, and hence the true

model can fall beyond the scope of the prior (Freedman, 1963, 1965). Therefore, it is crucial to

find reasonable conditions on the joint behavior of the prior and the true density to establish the

posterior consistency result.
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3.1 Identification

Although identification may not be necessary to ensure the convergence of the density forecasts to

the oracle predictor, identification is essential to ensure the posterior consistency of the estimates

so that the proposed method could be general to problems beyond forecasting, e.g. heterogeneous

treatment effect. Here, I present the identification result in terms of the correlated random coeffi-

cients model with cross-sectional heteroskedasticity, where random coefficients and cross-sectional

homoskedasticity can be viewed as special cases and will be discussed in Remark 3.

Assumption 1. (Identification: General Model)

1. Model setup: Consider the panel data model in (2),

(a)
(
ci0, λi, σ

2
i

)
are i.i.d. across i.

(b) For all t, conditional on (yit, ci,t−1), xP∗it is independent of
(
λi, σ

2
i

)
.

(c)
(
xOi,0:T , wi,0:T

)
are independent of

(
λi, σ

2
i

)
.

(d) Conditioning on ci0, λi and σ2
i are independent of each other.

(e) Let uit = σivit. vit ∼ N (0, 1) is i.i.d. across i and t and independent of
(
ci,t−1, λi, σ

2
i

)
.

2. Identification:

(a) The characteristic functions of λi|ci0 and σ2
i |ci0 are non-vanishing almost everywhere.

(b) For all i, wi,0:T−1 has full rank dw almost everywhere.

(c) Let x̃i,t−1 = xi,t−1−
∑T

s=t+1 xi,s−1w
′
i,s−1

(∑T
s=t+1wi,s−1w

′
i,s−1

)−1
wi,t−1 given by orthogonal

forward differencing. Then, the matrix E
[∑T−dw

t=1 x̃i,t−1x̃
′
i,t−1

]
has full rank dx.

Despite the conditional independence in condition 1-d, λi and σ2
i can potentially relate to each other

through ci0. The setup could be further extended, such as relaxing the conditional independence

between λi and σ2
i and allowing for more general vit distributions (discussed in the Appendix).

Theorem 2. (Identification: General Model) Under Assumption 1, the common parameters β and

the conditional distribution of individual effects, fλ(λi|ci0) and fσ2(σ2
i |ci0), are all identified.

The argument is similar to Arellano and Bover (1995) and Arellano and Bonhomme (2012), except

for the treatment of cross-sectional heteroskedasticity—here σ2
i is an unobserved random quantity.

First, the identification of common parameters β in panel data models is standard in the literature

(Baltagi, 1995; Arellano and Honoré, 2001; Arellano, 2003; Hsiao, 2014). For example, the rank

condition helps identify β via orthogonal forward differencing. Second, as λi is additively separable

from the shocks, I follow the standard proof based on characteristic functions to identify fλ. Finally,

note that unlike λi, σ
2
i interacts with the shocks in a multiplicative way. The Fourier transform

is not suitable for disentangling products of random variables, so I resort to the Mellin transform

(Galambos and Simonelli, 2004) to obtain the identification of fσ2 .

Remark 3. (1) For random coefficients models, Assumption 1(1-a) is replaced by “
(
λi, σ

2
i

)
are inde-

pendent of ci0 and i.i.d. across i.”
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(2) Under cross-sectional homoskedasticity, we can delete Assumption 1(1-d), get rid of σ2
i in con-

ditions 1-a,b,c and σ2
i |ci0 in condition 2-a, and replace condition 1-e by “uit is i.i.d. across i and t

and independent of (ci,t−1, λi).”

3.2 Posterior Consistency

Most of the previous nonparametric Bayesian literature focuses on density estimation problems (see

Related Literature) without deconvolution and dynamic panel data structures. In this subsection,

I first provide general sufficient conditions that ensure posterior consistency of the estimated com-

mon parameters ϑ and the estimated (conditional) distribution of individual effects f in a general

semiparametric setup, and then I specify and verify these conditions in cases of (correlated) random

coefficients models.

General Semiparametric Model. Let Θ be the space of the common parameters ϑ, F be a set of

the underlying distributions f with finite second moments, Π (·, ·) be a joint prior on Θ × F with

marginal priors being Πϑ (·) and Πf (·), and Π (·, ·|D) be the corresponding joint posterior. The

individual specific likelihood takes a general “convolution” form

g (Di|ϑ, f) =


∫
p (Di|ϑ, hi) f (hi) dhi, if f is an unconditional dist.,∫
p (Di\ ci0|ϑ, hi) f (hi| ci0) q0 (ci0) dhi, if f is a conditional dist.,

(7)

where Di\ ci0 denotes the set difference, and q0 (ci0) is the true marginal density of ci0.

The posterior consistency results are established with respect to the Wasserstein metric on

f . Let Γ (f1, f2) be the collection of all joint measures with marginals f1 and f2. We define the

second Wasserstein distance, W2 (f1, f2) =
(

infγ∈Γ(f1,f2)

∫
‖h1 − h2‖22 dγ (h1, h2)

)1/2
. Note that

convergence in the W2 metric is equivalent to weak convergence plus convergence of the second

moment (Santambrogio, 2015).

When f is a conditional distribution, it is helpful to link the properties of the conditional density

to the corresponding joint density f (h, c0) = f (h|c0) q0 (c0) without explicitly modeling q0, which

circumvents the difficulty associated with an uncountable set of conditional densities (Pati et al.,

2013). Note that q0 is only for theoretical derivation, and there is no need to estimate it in practice.

Theorem 4. (Posterior Consistency: General Semiparametric Model) Suppose we have:

1. Individual-specific likelihood:

(a) Kullback-Leibler (KL) property: For all ε > 0,

Π ((ϑ, f) : DKL (g (Di|ϑ0, f0) ‖ g (Di|ϑ, f)) < ε) > 0.

(b) There exists δϑ > 0 such that for all ‖ϑ1 − ϑ2‖2 < δϑ and f ∈ F , ‖g (Di|ϑ1, f)− g (Di|ϑ2, f)‖1 ≤
Cg ‖ϑ1 − ϑ2‖2 , for some Cg > 0 not depending on f .

11



(c) There exists an increasing function C : R≥0 7→ R≥0 with limx→0 C (x) = 0 such that for all

f ∈ F , W2 (f, f0) ≤ C (‖g (Di|ϑ0, f)− g (Di|ϑ0, f0)‖1).

2. Common parameters: There exists an exponentially consistent sequence of tests ϕN (D) for test-

ing H0 : ϑ = ϑ0, against H1 : ϑ ∈ Θc, i.e. there exists a constant Cϕ > 0 such that

(a) Eϑ0,f0ϕN (D) = O
(
e−CϕN

)
, and (b) sup

ϑ∈Θc,f∈F
Eϑ,f [1− ϕN (D)] = O

(
e−CϕN

)
,

where Θc ⊂ Θ and ϑ /∈ Θc.

3. Distribution of individual heterogeneity: Its prior satisfies a sieve property, i.e. there exists FN ⊂
F that can be partitioned as FN = ∪jFN,j such that, for all ε > 0,

(a) For some β > 0, Πf (FcN ) = O (exp (−βN)).

(b) For some γ > 0,
∑

j

√
N (ε,FN,j) Πf (FN,j) = o

(
exp

(
(1− γ)Nε2

))
, where N (ε,FN,j) is

the covering number of FN,j by balls with radius ε in the L1-norm.

Then, the posterior achieves consistency at (ϑ0, f0), i.e. for all ε, δ > 0, as N →∞,

Π ((ϑ, f) : ‖ϑ− ϑ0‖2 < δ, W2 (f, f0) < ε|D)→ 1,

in probability with respect to the true DGP.

Intuitively, let Θc
δ = {‖ϑ− ϑ0‖2 ≥ δ}, Fcε = {W2 (f, f0) ≥ ε}, and the likelihood ratioRN (D,ϑ, f) =∏N

i=1
g(Di|ϑ,f)
g(Di|ϑ0,f0) , the posterior probability of the alternative region can be decomposed as

Π (ϑ ∈ Θc
δ or f ∈ Fcε |D) = Πϑ (ϑ ∈ Θc

δ|D) + Π (ϑ ∈ Θδ and f ∈ Fcε |D)

= [P (ϑ ∈ Θc
δ, D) + P (ϑ ∈ Θδ, f ∈ Fcε , D)]/P (D)

=

[∫
Θcδ×F

RN (D,ϑ, f) dΠ (ϑ, f) +

∫
Θδ×Fcε

RN (D,ϑ, f) dΠ (ϑ, f)

]/∫
Θ×F

RN (D,ϑ, f) dΠ (ϑ, f) ,

and we want to show that the whole expression tends to zero as N goes to infinity. First, for the

denominator, the KL property (condition 1-a) implies that the prior puts positive weight around

neighborhoods of the true DGP, so the likelihood ratio integrated over the whole space is large

enough. Second, the exponentially consistent sequence of tests (condition 2) takes an infimum over

the alternative region Θc
δ×F , so it ensures that the first term in the numerator is arbitrarily small.

Third, the sieve property on f (condition 3) ensures that the sieve expands to the alternative region

and puts an asymptotic upper bound on the number of balls that cover the sieve. As the likelihood

ratio is small in each covering ball, the integration over the alternative region is still sufficiently

small (Canale and De Blasi, 2017).

When g is observed instead of f , we need to further address convolution and common parameters.

In terms of convolution, it preserves the L1-norm as well as the number of balls that cover the sieve.

Moreover, the inversion inequality in condition 1-c helps identify the underlying f based on the
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observed g. I use the Wasserstein metric on f because there are technical difficulties in establishing

a similar inversion inequality in the L1-norm, whereas recent literature found that the Wasserstein

metric circumvents the issue (Nguyen, 2013; Su et al., 2020). We can extend both condition 1-c and

the posterior consistency result to the Wp metric with p ≥ 1. In terms of the common parameters,

when ϑ is close to ϑ0 but f is far from f0, condition 1-b makes sure that the deviation generated

from ϑ is small enough so that it cannot offset the difference in f . Therefore, conditions 1-b,c and 3

together guarantee that the data are informative enough to differentiate the true distribution from

the alternatives, so the second term of the numerator can be arbitrarily small as well.

Note that the estimated individual effects hi are not consistent because information is accumu-

lated only along the cross-sectional dimension but not along the time dimension. Also, the result

only guarantees pointwise convergence in the space of the distributions. For uniform forecasting

performance in dynamic panel data models, see Liu et al. (2020), which considers an empirical Bayes

setup with a nonparametric kernel estimate of the marginal distribution of data.

Random Coefficients Model. In this case, f is an unconditional distribution. Here I focus on the

cross-sectional homoskedastic case due to the difficulty in constructing a suitable mollifier in the

cross-sectional heteroskedastic setup, which is left for future research. Then, the space for common

parameters ϑ =
(
β, σ2

)
is Θ = Rdx×

[
σ2, σ̄2

]
. Let Ef [g (λ)] =

∫
g (λ) f (λ) dλ for a generic function

g (λ). To ensure condition 1 in Theorem 4, we consider space F =
{
f : Ef ‖λ‖

2(1+η)
2 ≤M

}
, for

some large M > 0, and η is defined in Assumption 6(1-e) below.

Assumption 5. (Covariates)

1. wi,0:T−1 is bounded.

2. The eigenvalues of
∑

twi,t−1w
′
i,t−1 are no less than some small mw > 0.

3. xOi,0:T−1, x
P∗
i,0:T−1, and yi0 have finite 4 (1 + η′)-th moments with η′ > 0.

The conditions on wi,0:T−1 help obtain an upper bound on the W2-distance between f and its

convolution with a mollifier and hence ensure Theorem 4(1-c). Both conditions can be relaxed to

“almost everywhere” with slight adjustments in the proofs. The moment conditions on xi,t−1 ensure

that the GMM estimates of the common parameters are asymptotically normal, so the exponentially

consistent sequence of tests in Theorem 4(2) can be constructed accordingly. All three conditions

also prevent a slight difference in β from obscuring the difference in f , and are essential to Theorem

4(1-a,b).

Assumption 6. (Distribution of Individual Heterogeneity: Random Coefficients)

1. True distribution f0:

(a) f0 (λ) is a continuous density.

(b) For some Mλ > 0, 0 < f0 (λ) ≤Mλ for all λ.

(c) Ef0 [log f0 (λ)] <∞.

(d) Ef0

[
log f0(λ)

ϕδ(λ)

]
<∞, where ϕδ (λ) = inf‖λ′−λ‖2<δ f0 (λ′), for some δ > 0.
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(e) For some η > 0, Ef0

[∫
‖λ‖2(1+η)

2

]
<∞.

2. The base distribution of the DPM prior (G0) follows a multivariate-normal-inverse-Wishart dis-

tribution, where the degree of freedom of the inverse Wishart component ν0 > max (2dw, (2dw + 1) (dw − 1)).

First, condition 1 ensures that the true distribution f0 is well-behaved, and a multivariate-normal-

inverse-Wishart G0 in condition 2 guarantees that the DPM prior is general enough to contain

the true distribution, so the KL property on f is established. Second, according to Corollary 1 in

Canale and De Blasi (2017), condition 2 further ensures the sieve property (Theorem 4(3)), where

2dw controls the tail behavior of component mean µ and (2dw + 1) (dw − 1) regulates the eigenvalue

structure of component variance Ω.

Theorem 7. (Posterior Consistency: Random Coefficients) Suppose we have:

1. Model: Remark 3 for random coefficients models with cross-sectional homoskedasticity.

2. Covariates: (xi,0:T , wi,0:T ) satisfies Assumption 5.

3. Common parameters:

(a) ϑ0 is in the interior of supp (Πϑ).

(b) The domain of σ2 is bounded by
[
σ2, σ̄2

]
for some σ2, σ̄2 > 0.

4. Distributions of individual heterogeneity: f0 and Πf satisfy Assumption 6.

Then, the posterior achieves consistency at (ϑ0, f0).

Correlated Random Coefficients Model. f is now a conditional distribution, so the following dis-

cussion is based on the q0-induced measure. Let C be the support of the conditioning variables, and

F∗ be a subset of conditional distributions such that mapping c0 7→ f (·|c0) is a continous function

from C to the space of Lebesgue integrable functions on Rdw . Similar to the above discussion on

random coefficients models, I focus on the cross-sectional homoskedastic case and consider space

F =
{
f :

{
Ef,q0 ‖λ‖

2(1+η)
2 ≤M

}
∩ F∗

}
, where Ef,q0 [g (λ, c0)] =

∫
g (λ, c0) f (λ|c0) q0 (c0) dλdc0 for

a generic function g (λ, c0). M is some large positive constant, and η is defined in Assumption 9(1-e)

below.

Assumption 8. (Conditioning set) C is compact, and q0 (c0) > 0 for all c0 ∈ C.

The compactness ensures uniform convergence on C in the proof of the KL property. It is stronger

than the C part in Assumption 5(1,3) for random coefficients models.

Assumption 9. (Distribution of Individual Heterogeneity: Correlated Random Coefficients)

1. True distribution f0:

(a) f0 (·|·) is jointly continuous in (λ, c0).

(b) For some Mλ > 0, 0 < f0 (λ|c0) ≤Mλ for all (λ, c0).

(c) Ef0,q0 [log f0 (λ|c0)] <∞.

(d) Ef0,q0

[
log f0(λ|c0)

ϕδ(λ|c0)

]
<∞, where ϕδ (λ|c0) = inf‖λ′−λ‖2<δ f0 (λ′|c0), for some δ > 0.
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(e) For some η > 0, Ef0,q0

[∫
‖λ‖2(1+η)

2

]
<∞.

2. The base distribution of the MGLRx prior (G0) is characterized by a multivariate normal distri-

bution on vec (µ) and an inverse Wishart distribution on Ω, where the degree of freedom of the

inverse Wishart component ν0 > max (2dw, (2dw + 1) (dw − 1)).

3. Stick-breaking process: The covariance function for Gaussian process can be specified as Vk (c, c̃) =

τ exp
(
−Ak ‖c− c̃‖22

)
, where τ > 0 is a fixed number.

(a) The prior for Ak has full support on R+.

(b) There exist β, γ > 0 and a sequence δN = O
(
N−5/2 (logN)2

)
such that P (Ak > δN ) ≤

exp
(
−N−βk(β+2)/γ log k

)
.

(c) For the same γ as in condition 3-b, there exists an increasing sequence rN → ∞ and

(rN )dc0 = o
(
N1−γ (logN)−(dc0+1)

)
such that P (Ak > rN ) ≤ exp (−N).

These conditions build on Pati et al. (2013) for posterior consistency under the conditional density

topology and further extend it to multivariate conditional density estimation with infinite location-

scale mixtures. The conditions on f0 and G0 can be viewed as conditional density analogs of the

conditions in Assumption 6. In terms of the stick-breaking process, the variability of pk (c0) due to

c0 decreases with component index k according to condition 3-b, so the first several “sticks” would

be able to capture a large fraction of the dependence of λ on c0. Moreover, the tail of Ak cannot

be too fat according to condition 3-c.

Theorem 10. (Posterior Consistency: Correlated Random Coefficients) Suppose we have:

1. Model: Remark 3(2) for cross-sectional homoskedastic models.

2. Covariates: (xi,0:T , wi,0:T ) satisfy Assumptions 5(2,3) and 8.

3. Common parameters: Theorem 7(3).

4. Distributions of individual heterogeneity: f0 and Πf satisfy Assumption 9.

Then, the posterior achieves consistency at (ϑ0, f0).

3.3 Density forecasts

Based on posterior consistency, we can bound the discrepancy between the proposed predictor and

the oracle by estimation uncertainties in ϑ and f , and then show the asymptotic convergence of the

density forecasts to the oracle forecast. Theorem 21 in the Appendix established the convergence

result in the general semiparametric setup, and the following theorem focuses on the (correlated)

random coefficients models considered in the paper.

Theorem 11. (Density Forecasts: (Correlated) Random Coefficients with Cross-sectional Homoskedas-

ticity) Given conditions in Theorem 7 for random coefficients models (or conditions in Theorems

10 and continuity of q0 (c0) for correlated random coefficients models), density forecasts converge to
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the oracle for all i with Ef0

[
‖λ‖22

∣∣∣ ci0] <∞, i.e. given i, for all ε > 0, as N →∞,

P
(
W2

(
f condi,T+1, f

oracle
i,T+1

)
< ε
∣∣∣D)→ 1,

in probability with respect to the true DGP.

The asymptotic convergence of aggregate-level density forecasts can then be derived by summing

individual-specific forecasts over different subcategories.

4 Monte Carlo Simulation

This section conducts two sets of Monte Carlo simulation experiments: the baseline setup with

random effects, and the general setup with correlated random coefficients and cross-sectional het-

eroskedasticity. The main text focuses on density forecast results, whereas point forecast results are

deferred to the Appendix.

4.1 Forecast Evaluation and Alternative Predictors

The accuracy of the density forecasts is measured by the log predictive score (LPS) as suggested

in Geweke and Amisano (2010), LPS = 1
N

∑
i log p̂ (yi,T+1|D) , where yi,T+1 is the realization at

T + 1, and p̂ (yi,T+1|D) represents the predictive likelihood with respect to the estimated model

conditional on the observed data D. exp (LPSA − LPSB) gives the odds of future realizations

based on predictor A versus predictor B. I performed a test combining Amisano and Giacomini

(2007) (for the LPS) and Qu et al. (2020) (for panel data, see their Section 2.6 on general loss

functions) to examine the significance in the LPS difference.

Different predictors can be interpreted as different priors on the distribution of λi. As these priors

are distributions over distributions, Figure 1 plots two draws from each prior. The homogeneous

prior (Homog) implies an extreme kind of pooling, which assumes that all firms have the same skill

level λ∗. It can be viewed as a Bayesian counterpart of the pooled OLS estimator. More rigorously,

this prior is defined as λi ∼ δλ∗ , where δλ∗ is the Dirac delta function representing a degenerate

distribution. The unknown λ∗ becomes another common parameter, similar to β, so I adopt a

multivariate-normal-inverse-gamma prior on
(
[β, λ∗]′ , σ2

)
.

The flat prior (Flat) is specified as f (λi) ∝ 1, an uninformative prior with the posterior mode

being the MLE estimate. Given the common parameters, there is no pooling from the cross-section,

so we learn firm i’s skill λi only from its own history.

The parametric prior (Param) combines cross-sectional information via a parametric distribu-

tion, such as a Gaussian distribution with unknown mean and variance, λi ∼ N
(
µ, ω2

)
. A normal-

inverse-gamma hyperprior is further adopted for
(
µ, ω2

)
. The parametric prior can be viewed as a

limit case of the DPM prior when the scale parameter α→ 0, so there is only one component, and
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Figure 1: Alternative Predictors

Notes: For easier illustration, here I consider the baseline model with univariate λi and homoskedasticity. The black
solid and teal dotted lines represent two draws from each prior (except NP-disc, where the teal one is also solid).
Homog: Because λ∗ is unknown ex ante, the subgraph plots two vertical lines representing two degenerate
distributions with different locations. Param: The subgraph contains two curves with different means and variances.
NP-disc: See Appendix for a formal definition of the DP and how it relates to the DPM.

(
µ, ω2

)
are directly drawn from the base distribution G0. The choice of the hyperprior follows the

suggestion by Basu and Chib (2003) to match the parametric model with the DPM model such that

“the predictive (or marginal) distribution of a single observation is identical under the two models.”

The nonparametric discrete prior (NP-disc) is modeled by a DP where λi follows a flexible

nonparametric distribution on a discrete support. This paper focuses on continuous f , which may

be more sensible for the skills of young firms as well as other similar empirical studies. In this

sense, comparing with NP-disc helps examine how much can be gained or lost from the continuity

assumption and from the additional layer of mixture.

Finally, NP-R denotes the proposed nonparametric prior for random effects/coefficients models,

and NP-C for correlated random effects/coefficients models. Both are flexible priors on continuous

distributions, and NP-C allows λi to depend on the initial condition of the firms.

The semiparametric predictors would reduce the estimation bias due to their flexibility while

increasing the estimation variance due to their complexity. It is not transparent ex ante whether

the parsimonious parametric predictors or the flexible semiparametric ones would perform better.

Therefore, it is worthwhile to implement the Monte Carlo experiments and assess which predictor

produces more accurate forecasts under which circumstances.
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Table 1: Simulation Setup: Baseline Model with Random Effects

Law of motion yit = βyi,t−1 + λi + uit, uit ∼ N
(
0, σ2

)
Common parameters β0 = 0.8, σ2

0 = 1
4

Initial conditions yi0 ∼ N (0, 1)
Sample size N = 1000, T = 6

Random Effects:
Degenerate λi = 0
Skewed λi ∼ 1

9N
(
2, 1

2

)
+ 8

9N
(
−1

4 ,
1
2

)
, so V (λi) = 1

Bimodal λi ∼ (0.35N (0, 1) + 0.65N (10, 1)) /
√

1 + 102 · 0.35 · 0.65, so V (λi) = 1

4.2 Baseline Model with Random Effects

The specifications are summarized in Table 1. β0 is set to 0.8, as economic data usually exhibit some

degree of persistence. The initial condition yi0 is drawn from a standard normal distribution, which

satisfies the moment condition in Assumption 5(3). Choices of N = 1000 and T = 6 are comparable

with the young firm application. There are three experiments with different true distributions of λi.

The first experiment features a degenerate λi distribution, where all firms have the same skill level.

Note that it does not satisfy Assumption 6(1-a) requiring the true λi distribution to be continuous,

and thus serves as a robustness check against the misspecification that the true λi distribution

is out of the prior support. The second experiment is based on a skewed distribution, a more

realistic scenario in empirical studies. The third experiment incorporates a bimodal distribution

with asymmetric weights on the two components. Various robustness checks are discussed in the

Appendix.

I simulate 1,000 panel datasets in each setup. Forecasting performance, especially the relative

rankings and magnitudes, is highly stable across repetitions. In each repetition, I generate 40,000

MCMC draws and discard the first 20,000 as burn-in. Based on graphical and statistical tests, the

MCMC draws converge to a stationary distribution (see Appendix).

Table 2 shows the forecasting comparison across predictors. When the λi distribution is degen-

erate, Homog and NP-disc are the best, as expected. They are closely followed by NP-R and Param.

Flat is considerably worse. When the λi distribution is non-degenerate, there is a substantial gain

from employing NP-R. In the bimodal case, NP-R far exceeds all alternatives. In the skewed case,

Flat and Param are second best, yet still significantly inferior to NP-R. Homog and NP-disc yield

the poorest forecasts, which suggests that their discrete supports may not be able to approximate

the continuous λi distribution in this case—even the nonparametric DP prior with countably infinite

support may still be far from enough.

To investigate why we obtain better forecasts, Figure 2 plots the posterior distribution of the

λi distribution for experiments Skewed and Bimodal. In the skewed case, NP-R better tracks the

peak on the left and the tail on the right. In the bimodal case, NP-R nicely captures the M-

shape. Therefore, the nonparametric prior flexibly approximates a vast set of distributions, which
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Table 2: Density Forecast Evaluation: Baseline Model with Random Effects

Degenerate Skewed Bimodal

Oracle -725 *** -798 *** -766 ***

Homog -0.2*** -193*** -424***

Flat -102*** -7*** -38***

Param -4*** -1*** -34***

NP-disc -0.2*** -206*** -40***

NP-R -4*** -0.3*** -6***

Notes: The density forecasts are assessed by the LPS and a test combining Amisano and Giacomini (2007) and Qu
et al. (2020). For the oracle predictor, the table reports the exact values of LPS ·N (averaged over 1,000 Monte Carlo
samples). For other predictors, the table reports their differences from the oracle. The tests compare other feasible
predictors with NP-R, with significance levels indicated by *: 10%, **: 5%, and ***: 1%. The entries in bold indicate
the best feasible predictor in each column.

Figure 2: f0 vs Πf (f |y1:N,0:T ) : Baseline Model with Random Effects

(a) Skewed (b) Bimodal
Param NP-R Param NP-R

Notes: The subgraphs are constructed from the estimation results of one of the 1,000 repetitions. The black solid
lines represent the true λi distributions, f0. The teal bands show the posterior distributions of f , Πf (f |y1:N,0:T ).

provides more precise estimates of the underlying λi distributions and consequently more accurate

density forecasts. This connection between distribution estimation and density forecasts reflects the

theoretical results in Theorem 11.

4.3 General Model

The general model accounts for three key features: multidimensional individual heterogeneity, cross-

sectional heteroskedasticity, and correlated random coefficients. The exact specification is charac-

terized and depicted in Table 3.

In terms of multidimensional individual heterogeneity, λi is now a 3-by-1 vector, and the corre-

sponding covariates are composed of the intercept, time-specific w
(2)
t−1, and individual-time-specific

w
(3)
i,t−1. In terms of correlated random coefficients, I adopt the conditional distribution following

Dunson and Park (2008) and Norets and Pelenis (2014). They regard it as a challenging problem

because this conditional distribution exhibits rapid changes in its shape, which considerably restricts
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Table 3: Simulation Setup: General Model

Law of motion yit = βyi,t−1 + λ′iwi,t−1 + uit, uit = σivit

Covariates wi,t−1 = [1, w
(2)
t−1, w

(3)
i,t−1]′, w

(2)
t−1 ∼ N (0, 1)1

(∣∣∣w(2)
t−1

∣∣∣ ≤ 10
)

,

w
(3)
i,t−1 ∼ Ga (1, 1)1

(
w

(3)
i,t−1 ≤ 10

)
Common parameters β0 = 0.8
Initial conditions yi0 ∼ U (0, 1)
Corr. random coef. λi|yi0 ∼ e−2yi0N

(
yi0v, 0.1

2vv′
)

+
(
1− e−2yi0

)
N
(
y4
i0v, 0.2

2vv′
)
,

v = [1, 2,−1]′

Cross-sec. heterosk. σ2
i |yi0 ∼

[
0.454 (yi0 + 0.5)2 · IG (51, 40) + 10−6

]
· 1
(
σ2
i ≤ 106

)
Sample size N = 1000, T = 6

Innovation distributions:
Normal vit ∼ N (0, 1)
Skewed vit ∼ 1

9N
(
2, 1

2

)
+ 8

9N
(
−1

4 ,
1
2

)
(a) λi1| yi0 (b) σ2

i

∣∣ yi0

Notes: In the left two panels, λi1 is the coefficient on w
(1)
i,t−1 = 1 and can be interpreted as the heterogeneous

intercept. In the second and fourth panels, the black solid / teal dashed / orange dotted lines are conditional on
yi0 = 0.25, 0.5, and 0.75, respectively. As yi0 ∼ U (0, 1), the conditional distribution equals the joint distribution for
all yi0 ∈ [0, 1], i.e. f (λi1| yi0) = f (λi1| yi0) q0 (yi0) = f (λi1, yi0).

the local sample size. Their original conditional distribution is one-dimensional, and I expand it to

accommodate the three-dimensional λi via a linear transformation. In terms of cross-sectional het-

eroskedasticity, I also let σ2
i interact with the initial conditions, and the functional form is modified

from Pelenis (2014) Case (ii). The modification guarantees that the σ2
i distribution is continuous

with a large but bounded support above zero, and that the average signal-to-noise ratio is not

far from 1. In addition, I consider the distribution of the innovations vit to be either normal or

skewed. In the latter case, the normal likelihood function is misspecified. The vit distributions are

standardized, i.e. E (vit) = 0 and V (vit) = 1, so we can identify σ2
i .

The left two columns of Table 4 describe the prior setups of fλ and fσ2 . Due to cross-sectional

heteroskedasticity and correlated random coefficients, the prior structures become more compli-

cated. I further add Homosk-NP-C to examine whether it is practically relevant to model het-

eroskedasticity. The third column of Table 4 assesses the forecasting performance under correct
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Table 4: Prior Structures and Density Forecast Evaluation: General Model

fλ fσ2 (or fl) Normal vit* Skewed vit
Oracle Known Known -974*** -965***

Homog = δλ∗ fσ2 = δσ2∗ -407*** -417***

Homosk NP-C ∼ MGLRx fσ2 = δσ2∗ -134*** -146***

Heterosk Flat ∝ 1 fσ2 ∝ 1 -384*** -366***

Param = Normal fσ2 = IG -79*** -78***

NP-disc ∼ DP fl ∼ DP -79*** -78***

NP-R ∼ DPM fl ∼ DPM -229*** -224***

NP-C ∼ MGLRx fl ∼ MGLRx -70*** -71***

Notes: The prior structure of Heterosk-Param is detailed in the Appendix. For density forecast evaluation, see the
description in Table 2. Here the tests are conducted with respect to Heterosk-NP-C.

specification. Heterosk-NP-C is the most accurate density predictor. There are several messages if

we compare density forecast performance across predictors. First, based on the comparison between

Heterosk-NP-C and Homog/Homosk-NP-C, it is important to account for individual effects in both

coefficients λi and shock size σ2
i . Second, comparing Heterosk-NP-C with Heterosk-Flat/Heterosk-

Param, we see that the flexible nonparametric prior plays a significant role in enhancing density

forecasts. Third, the difference between Heterosk-NP-C and Heterosk-NP-disc indicates that the

discrete prior performs less satisfactorily when the underlying individual heterogeneity is continuous.

Last, Heterosk-NP-R is less favorable than Heterosk-NP-C, which necessitates a careful modeling

of the correlated random coefficient structure.

Under a misspecified vit distribution, the oracle knows the true distribution of vit and still serves

as a legitimate benchmark for forecast evaluation. Although there is no theoretical guarantee, the

proposed semiparametric method could still be helpful in density forecasts due to its flexibility—in

the last column of Table 4, the relative ranking is the same as the correctly specified case, and NP-C

is still significantly better than the alternatives.

5 Empirical Application: Young Firm Dynamics

Studies have documented that young firm performance is affected by R&D and that different firms

may react differently (Robb and Seamans, 2014; Akcigit and Kerr, 2018). In this empirical applica-

tion, I examine this type of firm-specific latent heterogeneity from a density forecasting perspective.

I use the confidential data from the Kauffman Firm Survey (KFS), which offers a large panel of

startups (4,928 firms founded in 2004, nationally representative sample), a reasonable time span

(2004-2011, one baseline survey and seven follow-up annual surveys), and detailed information on

young firms. See Robb et al. (2009) for further description of the survey design.
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Table 5: Descriptive Statistics of Observables

10% Mean Med. 90% SD Skew. Kurt.

log emp 0.69 1.59 1.39 2.20 1.02 0.59 3.42
R&D 0.00 0.27 0.14 0.50 0.32 1.18 3.25

5.1 Model Specification

I consider the general model with multidimensional individual heterogeneity in λi and cross-sectional

heteroskedasticity in σ2
i . Following the firm dynamics literature, such as Zarutskie and Yang (2015)

and Akcigit and Kerr (2018), firm performance is measured by employment. From an economic point

of view, young firms make a significant contribution to employment and job creation (Haltiwanger

et al., 2012), and their struggle during the Great Recession may partly account for the jobless

recovery afterward. Below, I focus on the following model specification,

log empit = β log empi,t−1 + λ1i + λ2iR&Di,t−1 + uit, uit ∼ N
(
0, σ2

i

)
,

where R&Dit is given by the ratio of a firm’s R&D employment over its total employment. Other

setups are discussed in the Appendix. An extension to a panel Tobit model as in Liu et al. (2019)

could help accommodate firms’ endogenous exit choice, which is left for future exploration.

The panel used for estimation spans from 2004 (t = 0) to 2010 (t = T ) with time dimension

T = 6. The data for 2011 (t = T +1) are reserved for pseudo-out-of-sample forecast evaluation. The

sample is constructed as follows. First, for any (i, t), if firm i’s R&D employment is greater than

its total employment, there is an incompatibility issue, and the corresponding R&Dit is set to NA,

which only affects 0.68% of the observations. Then, I only keep firms with long enough observations

for identification in unbalanced panels. This results in a cross-sectional dimension N = 503. The

proportion of missing values is (#missing obs) / (NT ) = 9.32%. Here I consider unbalanced panels

with randomly omitted observations (see Appendix), which helps incorporate more individuals into

estimation and elicits more information for prediction. The descriptive statistics for log empit and

R&Dit are summarized in Table 5, and the corresponding densities are plotted in Figure 12 in the

Appendix. Both distributions are right skewed and may be multimodal, so we expect that the

proposed predictors with nonparametric priors could perform well in this example.

5.2 Results

The alternative priors are similar to those in the Monte Carlo simulation except for one additional

prior, Heterosk-NP-C/R, where λi can be correlated with yi0 while σ2
i is independent with respect

to yi0. Then, I adopt an MGLRx prior on fλ and a DPM prior on fl for Heterosk-NP-C/R. The con-

ditioning variable yi0 is further standardized, which ensures numerical stability as the conditioning

variables enter exponentially into the covariance function of the Gaussian process.
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Table 6: Parameter Estimation and Density Forecast Evaluation: Young Firm Dynamics

β LPS*N
Mean SD

Heterosk NP-C/R 0.50 0.02 -195 ***

Homog 0.88 0.02 -139***

Homosk NP-C 0.48 0.02 -113***

Heterosk Flat 0.19 0.07 -134***

Param 0.62 0.07 -63***

NP-disc 0.92 0.01 -88***

NP-R 0.74 0.04 -20***

NP-C 0.53 0.03 -6***

Notes: See the description of Table 2 for density forecast evaluation. Here Heterosk-NP-C/R is the benchmark for
both normalization and significance tests. For Heterosk-NP-C/R, the table reports the exact values of LPS ·N . For
other predictors, the table reports their differences from Heterosk-NP-C/R.

The first two columns in Table 6 characterize the posterior estimates of the common parameter

β. In most cases, the posterior means are mostly around 0.5 ∼ 0.6, which suggests that the

young firm performance exhibits some degree of persistence, but the persistence is not strong. For

Homog and NP-disc, their posterior means of β are much larger. This may arise from the fact that

homogeneous or discrete λi structure may not be able to capture all individual effects, so these

estimators may attribute the remaining individual effects to the persistence and thus overestimate

β. NP-R also gives a large estimate of β. The reason is similar—if the true DGP features correlated

random coefficients, the random coefficients model would miss the effect of the initial condition and

misinterpret it as the persistence. In all scenarios, the posterior standard deviations are relatively

small.

The last column in Table 6 compares density forecasting performance. The overall best is

Heterosk-NP-C/R. The main message is similar to the Monte Carlo of the general model—it is

crucial to account for individual effects in both coefficients λi and shock size σ2
i through a flexible

nonparametric prior that acknowledges continuity and correlated random coefficients when the un-

derlying individual heterogeneity has these features. Intuitively, the odds, given by the exponential

of the difference in the LPS, indicate that Heterosk-NP-C/R produces density forecasts 32% (31%)

more likely than Homog (Heterosk-Flat) does, on average.

Figures 3 and 13 (in the Appendix) provide the histograms of the probability integral transfor-

mation (PIT). While the LPS characterizes the relative ranks of predictors, the PIT complements

the LPS and can be viewed as an absolute evaluation of how well the density forecasts coincide

with the true (unobserved) conditional forecasting distributions given the current information set.

Under the null hypothesis that the density forecasts coincide with the true DGP, the PITs are i.i.d.

U (0, 1) and the histogram is close to a flat line (Diebold et al., 1998; Amisano and Geweke, 2017).

We can see that, in NP-C/R, NP-C, and Flat, the histogram bars are mostly within the confidence
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Figure 3: PIT

Homog NP-C/R

Notes: Teal lines indicate the confidence interval. See Appendix for PITs of all predictors.

band, while other predictors yield apparent inverse-U shapes. The reason might be that the other

predictors do not take correlated random coefficients into account but instead attribute their effects

to the shock variance, which leads to more diffused predictive distributions.

Figure 4 shows four types of firm-level predictive distributions: compared with Homog’s Gaussian

predictive distributions, NP-C/R is more concentrated in (a), more dispersed in (b), more skewed

in (c), or exhibits extra kurtosis in (d). Figure 14 in the Appendix regroups these predictive

distributions by predictors. For Homog, all predictive distributions share the same Gaussian shape

paralleling with each other. On the contrary, for NP-C/R, the predictive distributions exhibit fairly

different shapes.

Figures 5 and 15 (in the Appendix) further aggregate the predictive distributions over sectors. It

plots the predictive distributions of log average employment within each sector. Comparing Homog

and NP-C/R across sectors, we can see several patterns. First, NP-C/R predictive distributions

tend to be narrower. The reason is that NP-C/R tailors to each firm while Homog prescribes a

general model to all the firms, so NP-C/R yields more precise predictive distributions. Second,

NP-C/R predictive distributions have longer right tails, whereas Homog ones are in the standard

bell shape. The long right tails in NP-C/R concur with the fact that good ideas are scarce. Finally,

there is substantial heterogeneity in density forecasts across sectors. For sectors with relatively large

average employment, e.g. construction, Homog pushes the forecasts down and hence systematically

underpredicts their future employment, while NP-C/R respects this source of heterogeneity and

significantly lessens the underprediction problem. On the other hand, for sectors with relatively

small average employment, e.g. retail trade, Homog introduces an upward bias into the forecasts,

while NP-C/R reduces this bias by flexibly estimating the underlying distribution of firm-specific

heterogeneity.

The latent heterogeneity structure is presented in Figure 6, which plots the joint distributions

of the estimated individual effects and the conditional variable. For example, the pairwise relation-

ship between λi1 and the standardized yi0 is nonlinear and exhibits multiple components, which

reassures our adoption of the nonparametric prior with correlated random coefficients. I also de-
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Figure 4: Predictive Distributions: Firm-level, 4 Types

(a) (b) (c) (d)

Notes: The black solid (teal dotted) lines are the predictive distributions via the NP-C/R (Homog).

Figure 5: Predictive Distributions: Aggregated by Sectors

Construction Retail Trade

Notes: The black solid (teal dotted) lines are the predictive distributions via the NP-C/R (Homog). See Appendix
for predictive distributions of all sectors.

pict pairwise joint distributions involving σ̂2
i in the Appendix. There does not seem to be much

correlation between λ̂i and σ̂2
i and between σ̂2

i and yi0 (the latter is in line with the forecasting

performance ranking where NP-C/R provides better density forecasts than NP-C does), which, to-

gether with sanity checks on (un)conditional correlation as well as a robustness check on density

forecast performance (see Appendix), partially supports the assumption that conditioning on yi0,

λi and σ2
i would be independent in this young firm sample.

6 Conclusion

This paper proposes a semiparametric Bayesian predictor, which performs well in density forecasts

of individuals in a panel data setup. It considers the underlying distribution of individual effects

and combines information from the whole panel in a flexible and efficient way. The full Bayesian

procedure helps capture all sources of uncertainties and, together with the flexibility in the nonpara-

metric Bayesian prior, cross-sectional heteroskedasticity, and correlated random coefficients, leads

to more accurate density forecasts. The proposed method is theoretically appealing as the paper

proves the posterior consistency of the estimates and the convergence of the density forecasts to
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Figure 6: Joint Distributions: λ̂i and yi0

λ̂
i1

Standardized yi0

λ̂
i2

Standardized yi0

λ̂
i2

λ̂i1

Notes: λi1 is the heterogeneous intercept, and λi2 is the heterogeneous coefficient on R&D.

the oracle in cross-sectional homoskedastic cases. The proposed method is also practically useful as

demonstrated in the Monte Carlo simulations and an empirical application to young firm dynamics.
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Supplementary Appendix to “Density Forecasts in Panel Data Models: A

Semiparametric Bayesian Perspective”

Laura Liu

A Notations

U (a, b) represents a uniform distribution with minimum value a and maximum value b. If a = 0

and b = 1, we obtain the standard uniform distribution, U (0, 1).

N
(
µ, σ2

)
stands for a Gaussian/normal distribution with mean µ and variance σ2. Its proba-

bility distribution function (pdf) is given by φ
(
x;µ, σ2

)
. When µ = 0 and σ2 = 1 (i.e. standard

normal), we reduce the notation to φ (x). The corresponding cumulative distribution functions (cdf)

are denoted as Φ
(
x;µ, σ2

)
and Φ (x), respectively. The same convention holds for multivariate nor-

mal, where N (µ,Σ), φ (x;µ,Σ), and Φ (x;µ,Σ) are for the distribution with the mean vector µ and

the covariance matrix Σ.

The gamma distribution is denoted as Ga (a, b) with pdf being fGa (x; a, b) = ba

Γ(a)x
a−1e−bx.

The according inverse gamma distribution is given by IG (a, b) with pdf being fIG (x; a, b) =
ba

Γ(a)x
−a−1e−b/x. The Γ (·) in the denominators is the gamma function.

The inverse Wishart distribution is a generalization of the inverse gamma distribution to multi-

dimensional setups. Let Ω be a d×d positive definite matrix following an inverse Wishart distribution

IW (Ψ, ν), then its pdf is fIW (Ω; Ψ, ν) = |Ψ|
ν
2

2
νd
2 Γd( ν

2
)
|Ω|−

ν+d+1
2 e−

1
2
tr(ΨΩ−1). When Ω is a scalar, the

inverse Wishart distribution is reduced to an inverse gamma distribution with a = ν/2, b = Ψ/2.

For a generic variable c which can be multi-dimensional, we define a Gaussian process ζ (c) ∼
GP (m (c) , V (c, c̃)) as follows: for all finite set of {c1, c2, · · · , cn}, [ζ (c1) , ζ (c2) , · · · , ζ (cn)]′ has a

joint Gaussian distribution with the mean vector being [m (c1) ,m (c2) , · · · ,m (cn)]′ and the i, j-th

entry of the covariance matrix being V (ci, cj), i, j = 1, · · · , N .

1 (·) is an indicator function that equals 1 if the condition in the parenthesis is satisfied and

equals 0 otherwise.

IN is an N ×N identity matrix.

In the panel data setup, for a generic variable z, which can be v, w , x, or y, zit is a dz × 1

vector, and zi,t1:t2 = (zit1 , · · · , zit2) is a dz × (t2 − t1 + 1) matrix.

‖·‖p represents the Lp-norm, e.g. the Euclidean norm of a n-dimensional vector z = [z1, z2, · · · , zd]′

is given by ‖z‖2 =
√
z2

1 + · · ·+ z2
d, and the L1-norm of an integrable function is given by ‖f‖1 =∫

|f (x)| dx.

DKL (f0 ‖ f) =
∫
f0 log f0

f is the KL divergence of f from f0.

supp (·) denotes the support of a probability measure.
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tr (·) gives the trace of a matrix, |·| represents the determinant of a matrix, vec (·) denotes matrix

vectorization, and ⊗ is the Kronecker product.

X . Y (or X & Y ) is an abbreviated form of inequality X ≤ CY (or X ≥ CY ) for some C > 0.

B Model and Theory

B.1 Model

Short T . Which T can be considered small depends on the dimension of individual heterogeneity,

the cross-sectional dimension, and the size of the shocks. There can still be a significant gain in

density forecasts even when T exceeds 100 in simulations with fairly standard DGPs. Roughly, the

proposed predictor would provide a sizable improvement as long as the time series for individual i

is not informative enough to precisely recover its individual effects.

Dirichlet Process (DP). The DP is another candidate as a nonparametric prior, which is on a

discrete support and constitutes a key building block of the DPM. A DP has two parameters: the

base distribution G0 characterizing the center of the DP, and the scale parameter α representing

the precision (inverse-variance) of the DP. Denote

G ∼ DP (α,G0) ,

if for all partition (A1, · · · , AK),

(G (A1) , · · · , G (AK)) ∼ Dir (αG0 (A1) , · · · , αG0 (AK)) .

Dir (·) stands for the Dirichlet distribution with probability distribution function (pdf) being

fDir (x1, · · · , xK ; η1, · · · , ηK) =
Γ
(∑K

k=1 ηk

)
∏K
k=1 Γ(ηk)

K∏
k=1

xηk−1
k ,

which is a multivariate generalization of the Beta distribution.
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An alternative view of the DP is given by the stick breaking process,

G =

∞∑
k=1

pk1 (θ = θk) ,

θk ∼ G0, k = 1, 2, · · · ,

pk =

ζ1, k = 1,∏k−1
j=1 (1− ζj) ζk, k = 2, 3, · · · ,

where ζk ∼ Beta (1, α) , k = 1, 2, · · · .

The stick breaking process distinguishes the roles of G0 and α in that the former governs component

value θk while the latter guides the choice of component probability pk. Then, the DP scale param-

eter α controls the number of unique components in the mixture density and thus the flexibility

of the mixture density. Let K∗ denote the number of unique components. As derived in Antoniak

(1974), we have

E [K∗|α] ≈ α log

(
α+N

α

)
,

V [K∗|α] ≈ α
[
log

(
α+N

α

)
− 1

]
.

By definition, a draw from the DP is a discrete distribution. In this sense, considering the

baseline model, imposing a DP prior on the distribution f means restricting firms’ skills to some

discrete levels, which may not be very appealing for young firm dynamics as well as some other

empirical applications. A natural extension is to assume zi (= λi or li) follows a continuous para-

metric distribution f (z; θ) where θ are the parameters, and adopt a DP prior for the distribution

of θ. Then, the parameters θ are discrete while the individual heterogeneity z enjoys a continuous

distribution. This additional layer of mixture leads to the DPM model.

Intuition: MGLRx Prior. Here we give some intuition why the MGLRx prior is general enough to

accommodate a broad class of conditional distributions.

Define a generic variable z which can represent either λ or l. By Bayes’ theorem,

f (z|c0) =
f (z, c0)

f (c0)
.

The joint distribution in the numerator can be approximated by a mixture of normals

f (z, c0) ≈
∞∑
k=1

p̃kφ
([
z′, c′0

]′
; µ̃k, Ω̃k

)
,
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where µ̃k is a (dz + dc0)× 1 vector, and Ω̃k is a (dz + dc0)× (dz + dc0) covariance matrix.

µ̃k =
[
µ̃′k,z, µ̃

′
k,c0

]′
,

Ω̃k =

[
Ω̃k,zz Ω̃k,zc0

Ω̃k,c0z Ω̃k,c0c0

]
.

Applying Bayes’ theorem again to the normal kernel for each component k,

φ
([
z′, c′0

]′
; µ̃k, Ω̃k

)
= φ

(
c0; µ̃k,c0 , Ω̃k,c0c0

)
φ
(
z; µk

[
1, c′0

]′
,Ωk

)
,

where µk =
[
µ̃k,z − Ω̃k,zc0Ω̃−1

k,c0c0
µ̃k,c0

]
, Ωk = Ω̃k,zz − Ω̃k,zc0Ω̃−1

k,c0c0
Ω̃′k,zc0 . Combining all the steps

above, the conditional distribution can be approximated as

f (z|c0) ≈
∞∑
k=1

p̃kφ
(
c0; µ̃k,c0 , Ω̃k,c0c0

)
φ
(
z; µk [1, c′0]′ ,Ωk

)
f (c0)

=

∞∑
k=1

pk (c0)φ
(
z; µk

[
1, c′0

]′
,Ωk

)
.

The last line is given by collecting marginals of c0 into pk (c0) =
p̃kφ(c0; µ̃k,c0 ,Ω̃k,c0c0)

f(c0) .

In summary, the current setup is similar to approximating the conditional density via Bayes’

theorem, but does not explicitly model the distribution of the conditioning variable c0, and thus

circumvents the difficulty associated with an uncountable set of conditional densities (Pati et al.,

2013).

Extension: Unbalanced Panels. The discussion can be extended to unbalanced panels with ran-

domly omitted observations, which incorporates more data into the estimation and elicits more

information for the prediction. Conditional on the covariates, the common parameters, and the dis-

tributions of individual heterogeneities, yits are cross-sectionally independent, so the theoretical ar-

gument and numerical implementation are still valid in a similar manner. Let Ti = {si1, si2, · · · , siTi}
be the set of Ti periods when individual i has complete observations. That is, (yit, wi,t−1, xi,t−1) are

observed for all t ∈ Ti. Note that:

(1) The sample is restricted to individuals with T + 1 ∈ Ti (i.e. siTi = T + 1), so the individual

forecasts could be evaluated by the pseudo-out-of-sample outcomes yi,T+1. This restriction could

be relaxed if one would like to estimate the model using a larger sample but only evaluate the

forecasting performance on a subset of the individuals with existing yi,T+1.

(2) It is also required that the conditioning variables ci0 exist for all individuals (in practice, it

is more feasible to only take into account a subset of ci0 or a function of ci0 that is relevant for the

specific study). This assumption could also be relaxed depending on the model setup. For example,
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in the baseline model, it may sometimes be reasonable to let ci0 = yi,si1−1.

(3) This structure is able to accommodate balanced panels by setting Ti = {1, · · · , T + 1}.
Then, we can discard the unobserved periods and redefine the conditioning set at time t = siτ ,

τ = 1, · · · , Ti, to be

ci,t−1 =
(
ci0, x

P
i,Siτ−1, x

O
i,Ti−1, wi,Ti−1

)
,

where Ti − 1 indicates the set of time periods {si1 − 1, si2 − 1, · · · , siTi − 1}, and Siτ − 1 is the set

of time periods {si1 − 1, si2 − 1, · · · , siτ − 1}.

Assumption 12. (Identification: Unbalanced Panels) For all i,

1. ci0 is observed.

2. xiT and wiT are observed.

3. For all i, wi,Ti has full rank dw almost everywhere.

4. For t = siτ , τ = 1, · · · , Ti − dw − 1, let

x̃i,t−1 = x̃i,siτ−1 = xi,siτ−1 −
Ti−1∑
j=τ+1

xi,sij−1w
′
i,sij−1

 Ti−1∑
j=τ+1

wi,sij−1w
′
i,sij−1

−1

wi,siτ−1.

given by orthogonal forward differencing. Then, the matrix E
[∑Ti−dw−1

τ=1 x̃i,siτ−1x̃
′
i,siτ−1

]
has full

rank dx.

The first condition guarantees the existence of the initial conditioning set for the correlated random

coefficients model. The second condition ensures that the covariates in the forecast equation are

available in order to make predictions. The third and fourth conditions are the unbalanced panel

counterparts of Assumption 1(2-b,c). They guarantee that the observed periods are long and in-

formative enough to distinguish different aspects of common effects and individual effects. Now we

can obtain similar identification results for unbalanced panels under Assumptions 1 (except 2-b,c)

and 12.

B.2 Identification

Conditional Independence between λi and σ2
i . Assumption 1(1-a) characterizes the correlated ran-

dom coefficients model, where there can be a potential correlation between the individual hetero-

geneity
(
λi, σ

2
i

)
and the conditioning variables ci0. Therefore, despite the conditional independence

in Assumption 1(1-d), λi and σ2
i can potentially relate to each other through ci0. For example, a

young firm’s initial performance may reveal its underlying ability and risk.

For the random coefficients case, Assumption 1(1-a) can be altered to “
(
λi, σ

2
i

)
are independent

of ci0 and i.i.d. across i.” Together with Assumption 1(1-d), it implies that
(
λi, σ

2
i , ci0

)
are mutually

independent.

In principle, we could relax the conditional independence between λi and σ2
i and still achieve
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identification under a proper set of regularity conditions. In terms of identification, One possible

direction could be based on Lemma 2 in Masten (2018), but we need to at least further assume

all absolute moments of λi and σ2
i are finite. In terms of implementation, we could adopt a joint

MGLRx prior on the vector of individual heterogeneity hi = (λ′i, li)
′, which combines the individual-

specific coefficients λi and the transformed cross-sectional heteroskedasticity li = log
σ̄2(σ2

i−σ2)
σ̄2−σ2

i
.

Despite the possibility of this extension, I keep the conditional independence assumption in this

paper considering that Appendix E.3 provides partial evidence on the empirical relevance of this

assumption.

Characteristic Function. Assumption 1(2-a) could be relaxed based on Evdokimov and White

(2012).

vit Distribution. Note that the normality of the shocks is a sufficient condition but not necessary.

It is possible to allow some additional flexibility in vit distribution. For example, the identifica-

tion argument still holds as long as (1) conditional on ci,t−1, vit is i.i.d. across i and independent

of
(
λi, σ

2
i

)
, (2) the distributions of vit, fv,t (vit|ci,t−1), have known functional forms, such that

E[vit|ci,t−1] = 0, V[vit|ci,t−1] = 1, and (3) the characteristic function of vit|ci,t−1 is non-vanishing

almost everywhere. Nevertheless, it seems unclear which other distribution could be a more appro-

priate choice a priori. Besides, as this paper studies panels with short time spans, time-varying

shock distribution may not play a significant role.

Furthermore, it would be theoretically possible to even further extend it to the case where

fv(vit|ci,t−1) is inferred via a flexible nonparametric estimator as well (under similar standardization

as above). The intuition is that (λi, σ
2
i ) varies over i whereas vit varies over both i and t, so we

could in principle distinguish them. On the other hand, empirically, it may not often be a good

idea to ask too much from the finite sample, which would lead to in-sample overfitting and poor

forecasts.

Example: Baseline Model. For the baseline setup in (1), we can reduce Assumption 1 and establish

the identification result based on a simpler set of assumptions as follows.

Assumption 13. (Identification: Baseline Model)

1. (yi0, λi) are i.i.d. across i.

2. uit is i.i.d. across i and t and independent of (yi0, λi).

3. The characteristic function of λi|yi0 is non-vanishing almost everywhere.

4. T ≥ 2.

Taking young firm dynamics as the example, the second condition implies that skill is independent

of shock and that shock is independent across firms and times, so skill and shock are intrinsically

different and distinguishable. The third condition facilitates the deconvolution between the signal
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(skill) and the noise (shock) via the Fourier transform. The last condition guarantees that the time

span is long enough to distinguish persistence βyi,t−1 and individual effects λi.

B.3 Posterior Consistency

Density Estimation. To give the intuition behind the posterior consistency argument, let us first

consider a simpler scenario where we estimate the distribution of observables without deconvolution

and dynamic panel data structures. The following lemma restates Theorem 1 in Canale and De Blasi

(2017). Note that space F is not compact, so we introduce a compact subset FN that asymptotically

approximates F and then regularize the asymptotic behavior of FN instead of F .

Lemma 14. (Canale and De Blasi, 2017) Suppose we have:

1. Kullback-Leibler (KL) property: f0 is in the KL support of Π, i.e. for all ε > 0,

Π (f : DKL (f0 ‖ f) < ε) > 0.

2. Sieve property: There exists FN ⊂ F that can be partitioned as FN = ∪jFN,j such that, for all

ε > 0,

(a) For some β > 0, Π (FcN ) = O (exp (−βN)).

(b) For some γ > 0,
∑

j

√
N (ε,FN,j) Π (FN,j) = o

(
exp

(
(1− γ)Nε2

))
, where N (ε,FN,j) is

the covering number of FN,j by balls with radius ε in the L1-norm.1

Then, the posterior is strongly consistent at f0, i.e. for all ε > 0, as N →∞,

Π (f : ‖f − f0‖1 < ε|D)→ 1,

in probability with respect to the true DGP.

By Bayes’ Theorem, the posterior probability of the alternative region U c = {f ∈ F : ‖f − f0‖1 ≥ ε}
can be expressed as the ratio on the right hand side,

Π (U c|x1:N ) =

∫
Uc

N∏
i=1

f (xi)

f0 (xi)
dΠ (f)

/∫
F

N∏
i=1

f (xi)

f0 (xi)
dΠ (f) .

For the numerator, the sieve property ensures that the sieve expands to the alternative region and

puts an asymptotic upper bound on the number of balls that cover the sieve. As the likelihood ratio

is small in each covering ball, the integration over the alternative region is still sufficiently small.

For the denominator, the KL property implies that the prior of distributions puts positive weight

1As the covering number increases exponentially with the dimension of x, a direct adoption of Theorem 2 in Ghosal
et al. (1999) would impose a strong tail restriction on the prior and exclude the case where the base distribution G0

contains an inverse Wishart distribution for component variances. Hence, I follow the idea of Ghosal and van der Vaart
(2007) and Canale and De Blasi (2017), where they relax the assumption on the coverage behavior by a summability
condition of covering numbers weighted by their corresponding prior probabilities.

A-7



around the true distribution, so the likelihood ratio integrated over the whole space is large enough.

Therefore, the posterior probability of the alternative region is arbitrarily small.

To satisfy the KL requirement, we need some joint assumptions on the true distribution f0 and

the prior Π. Compared to general nonparametric Bayesian modeling, the DPM structure (and the

MGLRx structure for the correlated random coefficients model) imposes more regularities on the

prior Π and thus weaker assumptions on the true distribution f0 (see Assumptions 6 and 9).

Lemma 14 establishes posterior consistency in a density estimation context. However, as men-

tioned in the introduction, there are a number of challenges in adapting to the dynamic panel data

setting. The first challenge is, because we observe yit rather than λi, to disentangle the uncertainty

generated from unknown cross-sectional heterogeneity λi and from independent shocks uit, i.e. a

deconvolution problem.2 The second is to incorporate an unknown shock size σ2 in cross-sectional

homoskedastic cases.3 The third is to handle strictly exogenous and predetermined variables (in-

cluding lagged dependent variables) as covariates. The fourth is to address correlated random

coefficients by a flexible conditional density estimation.

C Proofs

C.1 Identification

Proof. (Theorem 2)

Parts 1 and 3 for common parameters β and additive individual-heterogeneity λi follow earlier works

such as Arellano and Bover (1995) and Arellano and Bonhomme (2012). Part 2 for cross-sectional

heteroskedasticity σ2
i is new.

1. Identify common parameters β. First, let us perform orthogonal forward differencing of equation

(2), i.e. for t = 1, · · · , T − dw,

ỹit = yit −
T∑

s=t+1

yisw
′
i,s−1

(
T∑

s=t+1

wi,s−1w
′
i,s−1

)−1

wi,t−1, (8)

x̃i,t−1 = xi,t−1 −
T∑

s=t+1

xi,s−1w
′
i,s−1

(
T∑

s=t+1

wi,s−1w
′
i,s−1

)−1

wi,t−1. (9)

2Some previous studies (Amewou-Atisso et al., 2003; Tokdar, 2006) estimate distributions of quantities that can be
inferred from observables given common coefficients. For example, in the linear regression problems with an unknown
error distribution, i.e. yi = β′xi + ui, conditional on the regression coefficients β, ui = yi − β′xi is inferrable from the
data. However, here the target λi intertwines with uit and cannot be easily inferred from the observed yit.

3Note that when λi and uit are both Gaussian with unknown variances, we cannot separately identify the variances
in the cross-sectional setting (T = 1). This is no longer a problem if either of the distributions is non-Gaussian or if
we work with panel data.
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Then, β is identified given Assumption 1(2-c) and the following moment condition:

E
∑
t

x̃i,t−1

(
ỹit − x̃′i,t−1β

)
= 0.

2. Identify the distribution of shock sizes fσ2 . After orthogonal forward differencing, define

ũit = ỹit − β′x̃i,t−1, (10)

s2
i =

T−dw∑
t=1

ũ2
it = σ2

i k
2
i ,

where k2
i ∼ χ2 (T − dw − dx) follows an i.i.d. chi-square distribution with (T − dw − dx) degrees of

freedom.

Note that the Fourier transform (i.e. characteristic functions with sign reversal) is not suitable

for disentangling products of random variables, so I resort to the Mellin transform (Galambos and

Simonelli, 2004). For a generic variable z, the Mellin transform of f (z) is specified as4

Mz (ξ) =

∫
ziξf (z) dz,

which exists for all ξ ∈ R.

Considering that σ2
i |ci0 and k2

i are independent, we have

Ms2 (ξ|ci0) =Mσ2 (ξ|ci0)Mk2 (ξ) .

Note that a chi-square distribution has a non-vanishing Mellin transform, so it is legitimate to

devide Mk2 (ξ|ci0) on both sides

Mσ2 (ξ|ci0) =Ms2 (ξ|ci0) /Mk2 (ξ) ,

which recoversMσ2 (ξ|ci0) and hence uniquely determines fσ2 . See Theorem 1.19 in Galambos and

Simonelli (2004) for the uniqueness.

3. Identify the distribution of individual effects fλ. Define

ẙi,1:T = yi,1:T − β′xi,0:T−1 = λ′iwi,0:T−1 + ui,1:T .

Let Y̊i = ẙi,1:T , Wi = w′i,0:T−1, and Ui = ui,1:T . Omitting subscript i, the above expression can be

simplified as

Y̊ = Wλ+ U.

Denote f̂z as the Fourier transform of fz, for z = Y̊ , λ, U . Based on Assumption 1(2-a), f̂λ (·|ci0)

4See the discussion on page 16 of Galambos and Simonelli (2004) for the generality of this specification.
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and f̂U (·|ci0) are non-vanishing almost everywhere. Then, we obtain

log f̂λ
(
W ′ξ|ci0

)
= log f̂Y̊ (ξ|ci0)− log f̂U (ξ|ci0) ,

where f̂Y̊ is constructed from the observables and the common parameters identified in part 1, and

f̂U is based on fσ2 identified in part 2. Note that W is non-random conditional on ci0. Let ζ = W ′ξ

and AW = (W ′W )−1W ′, then the second derivative of log f̂λ (ζ|ci0) is characterized by

∂2

∂ζ∂ζ ′
log f̂λ (ζ|ci0) = AW

(
∂2

∂ξ∂ξ′

(
log f̂Y̊ (ξ|ci0)− log f̂U (ξ|ci0)

))
A′W .

Moreover,

log f̂λ (0|ci0) = 0,

∂

∂ζ
log f̂λ (0|ci0) = −iAWE

(
Y̊
∣∣∣ ci0) ,

so we can pin down log f̂λ (ζ|ci0) and then fλ(λi|ci0).

Note: Once we identify fλ(λi|ci0) and fσ2(σ2
i |ci0), we can further recover their unconditional distri-

butions fλ(λi) and fσ2(σ2
i ) considering that ci0 is observed.

C.2 Posterior Consistency: General Semiparametric Model

Proof. (Theorem 4)

The proof builds on Canale and De Blasi (2017), which is in turn based on the early work by Barron

et al. (1999) and Ghosal and van der Vaart (2007). Now the discussion is significantly extended to

tackle convolution and common parameters. It suffices to show that: as N →∞,

(1) for all δ > 0, Πϑ (ϑ ∈ Θc
δ|D)→ 0,

(2) for all ε > 0, Πf (f ∈ Fcε
⋂
FcN |D)→ 0,

(3) for all ε > 0, there exists a δ (ε) > 0, such that Π
(
ϑ ∈ Θδ(ε) and f ∈ Fcε

⋂
FN
∣∣D)→ 0,

in probability with respect to the true DGP (Lemmas 16, 17, and 18, respectively). We let δ depend

on ε in point (3) because point (1) holds for all δ > 0, so it holds for δ′ (ε) = min (δ, δ (ε)) as well.

Then, the posterior probability of the alternative region

Π (ϑ ∈ Θc
δ or f ∈ Fcε |D)

≤Πϑ

(
ϑ ∈ Θc

δ′(ε)

∣∣∣D)+ Πf

(
f ∈ Fcε

⋂
FcN
∣∣∣D)+ Π

(
ϑ ∈ Θδ′(ε) and f ∈ Fcε

⋂
FN
∣∣∣D)→ 0, (11)

as N →∞, in probability with respect to the true DGP.
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Lemma 15. Suppose condition 1-a in Theorem 4 holds, then, for all η > 0, as N →∞,

exp (Nη)

∫
Θ×F

RN (D,ϑ, f) dΠ (ϑ, f)→∞,

almost surely with respect to the true DGP.

Proof. Similar to Barron et al. (1999) Lemma 4, the KL property on g (Theorem 4(1-a)) ensures

that for all η > 0,

P∞0
(∫

Θ×F
RN (D,ϑ, f) dΠ (ϑ, f) ≤ exp (−ηN) , infinitely often

)
= 0,

where P∞0 is characterized by the true DGP when N →∞.

Lemma 16. Suppose conditions 1-a and 2 in Theorem 4 hold, then, for all δ > 0, as N →∞,

Πϑ (ϑ ∈ Θc
δ|D)→ 0,

almost surely with respect to the true DGP.

Proof. Decompose the posterior probability by the sequence of exponentially consistent tests,

Πϑ (ϑ ∈ Θc
δ|D) =

∫
Θcδ×F

RN (D,ϑ, f) dΠ (ϑ, f)∫
Θ×F RN (D,ϑ, f) dΠ (ϑ, f)

(12)

≤ ϕN (D)+
(1− ϕN (D))

∫
Θcδ×F

RN (D,ϑ, f) dΠ (ϑ, f)∫
Θ×F RN (D,ϑ, f) dΠ (ϑ, f)

.

By the Borel-Cantelli Lemma, condition 2-a in Theorem 4 implies that the first term ϕN (D) → 0

as N → ∞, almost surely with respect to the true DGP. For the numerator in the second term,

note that

ENϑ0,f0

[
(1− ϕN (D))

∫
Θcδ×F

RN (D,ϑ, f) dΠ (ϑ, f)

]

=

∫
(1− ϕN (D))

[∫
Θcδ×F

RN (D,ϑ, f) dΠ (ϑ, f)

]
N∏
i=1

g (Di|ϑ0, f0) dD

=

∫
Θcδ×F

[∫
(1− ϕN (D))

N∏
i=1

g (Di|ϑ, f) dD

]
dΠ (ϑ, f)

≤ sup
ϑ∈Θc,f∈F

Eϑ,f [1− ϕN (D)]

≤O (exp (−CϕN)) ,
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where the last line follows condition 2-b in Theorem 4. Therefore, as N →∞,

exp (CϕN/2) (1− ϕN (D))

∫
Θcδ×F

RN (D,ϑ, f) dΠ (ϑ, f)→ 0, (13)

almost surely with respect to the true DGP. For the denominator in the second term, condition 1-a

in Theorem 4 ensures Lemma 15. If we let η = Cϕ/4, then as N →∞,

exp (CϕN/4)

∫
Θ×F

RN (D,ϑ, f) dΠ (ϑ, f)→∞, (14)

almost surely with respect to the true DGP. Combining (12), (13), and (14), we prove the lemma.

Lemma 17. Suppose conditions 1-a and 3-a in Theorem 4 hold, then, for all ε > 0, as N →∞,

Πf

(
f ∈ Fcε

⋂
FcN
∣∣∣D)→ 0,

almost surely with respect to the true DGP.

Proof. Decompose the posterior probability as follows,

Πf

(
f ∈ Fcε

⋂
FcN
∣∣∣D) =

∫
Θ×Fcε

⋂
FcN

RN (D,ϑ, f) dΠ (ϑ, f)∫
Θ×F RN (D,ϑ, f) dΠ (ϑ, f)

. (15)

For the numerator,

ENϑ0,f0

[∫
Θ×Fcε

⋂
FcN

RN (D,ϑ, f) dΠ (ϑ, f)

]

≤ENϑ0,f0

[∫
Θ×FcN

RN (D,ϑ, f) dΠ (ϑ, f)

]

=

∫ [∫
Θ×FcN

RN (D,ϑ, f) dΠ (ϑ, f)

]
N∏
i=1

g (Di|ϑ0, f0) dD

=

∫
Θ×FcN

[∫ N∏
i=1

g (Di|ϑ, f) dD

]
dΠ (ϑ, f)

=Πf (FcN )

=O (exp (−βN)) ,

where the last line follows condition 3-a in Theorem 4. Therefore, as N →∞,

exp (βN/2) (1− ϕN (D))

∫
Θ×Fcε

⋂
FcN

RN (D,ϑ, f) dΠ (ϑ, f)→ 0, (16)
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almost surely with respect to the true DGP. For the denominator, condition 1-a in Theorem 4

ensures Lemma 15. If we let η = β/4, then as N →∞,

exp (βN/4)

∫
Θ×F

RN (D,ϑ, f) dΠ (ϑ, f)→∞, (17)

almost surely with respect to the true DGP. Combining (15), (16), and (17), we prove the lemma.

Lemma 18. Suppose conditions 1 and 3-b in Theorem 4 hold, then, for all ε > 0, there exists a

δ (ε) > 0,5 such that as N →∞,

Π
(
ϑ ∈ Θδ(ε) and f ∈ Fcε

⋂
FN
∣∣∣D)→ 0,

in probability with respect to the true DGP.

Proof. 1. Inversion inequality. Define ε′ = C−1 (ε) /9 and

δ (ε) = min
(
ε′/ (4Cg) , δϑ/2

)
= min

(
C−1 (ε)

/
(36Cg) , δϑ/2

)
,

then for all ‖ϑ− ϑ0‖2 < δ (ε), f ∈ Fcε ,

‖g (Di|ϑ, f)− g (Di|ϑ0, f0)‖1 (18)

≥‖g (Di|ϑ0, f)− g (Di|ϑ0, f0)‖1 − ‖g (Di|ϑ, f)− g (Di|ϑ0, f)‖1
≥C−1 (W2 (f, f0))− Cg ‖ϑ− ϑ0‖2

≥9ε′ − 1

4
ε′ > 8ε′.

The second line is given by the triangular inequality. The first and second terms in the third

line follow conditions 1-c and 1-b in Theorem 4, respectively. Denote g0 (Di) = g (Di|ϑ0, f0) and

g (Di) = g (Di|ϑ, f). Based on Ghosal and van der Vaart (2007) Corollary 1, for all set G with

infg∈G ‖g − g0‖1 ≥ 8ε′,6 for all γ1, γ2 > 0, there exists a test ϕ̃N (D) such that

ENg0
ϕ̃N (D) ≤

√
γ2

γ1
N
(
ε′, G

)
exp

(
−Nε′2

)
and sup

g∈G
ENg [1− ϕ̃N (D)] ≤

√
γ1

γ2
exp

(
−Nε′2

)
. (19)

5We let δ depend on ε here because Lemma 16 holds for all δ > 0.
6The original Ghosal and van der Vaart (2007) Corollary 1 considers the Hellinger distance, which is defined as

dH (g, g0) =
√∫ (√

g −√g0

)2
. Note that d2

H (g, g0) ≤ ‖g − g0‖1 ≤ 2dH (g, g0), so infg∈Q dH (g, g0) ≥ 4ε′.
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2. Sieve prorperty. For all ‖ϑ1 − ϑ2‖2 < δϑ and f1, f2 ∈ F ,

‖g (Di|ϑ1, f1)− g (Di|ϑ2, f2)‖1
≤‖g (Di|ϑ2, f1)− g (Di|ϑ2, f2)‖1 + ‖g (Di|ϑ1, f1)− g (Di|ϑ2, f1)‖1
≤‖f1 − f2‖1 + Cg ‖ϑ1 − ϑ2‖2 .

The bound of the first term is based on the general “convolution” form of the individual likelihood in

(7), and the bound of the second term follows Theorem 4(1-b). If f is an unconditional distribution,

‖g (Di|ϑ2, f1)− g (Di|ϑ2, f2)‖1 =

∫ ∣∣∣∣∫ p (Di|ϑ2, hi) f1 (hi) dhi −
∫
p (Di|ϑ2, hi) f2 (hi) dhi

∣∣∣∣ dDi

≤
∫ [∫

p (Di|ϑ2, hi) dDi

]
|f1 (hi)− f2 (hi)| dhi

= ‖f1 − f2‖1 .

If f is a conditional distribution,

‖g (Di|ϑ2, f1)− g (Di|ϑ2, f2)‖1

=

∫ ∣∣∣∣∫ p (Di\ ci0|ϑ2, hi) f1 (hi| ci0) q0 (ci0) dhi −
∫
p (Di\ ci0|ϑ2, hi) f2 (hi| ci0) q0 (ci0) dhi

∣∣∣∣ dDi

≤
∫ [∫

p (Di\ ci0|ϑ2, hi) d (Di\ ci0)

]
|f1 (hi| ci0)− f2 (hi| ci0)| q0 (ci0) dhidci0

= ‖f1 − f2‖1 .

Considering ε′ and δ (ε) defined in part 1, for all ‖ϑ1 − ϑ0‖2 < δ (ε) and ‖ϑ2 − ϑ0‖2 < δ (ε), we have

‖ϑ1 − ϑ2‖2 < 2δ (ε). Then, for all ‖f1 − f2‖1 < ε′/2,

‖g (Di|ϑ1, f1)− g (Di|ϑ2, f2)‖1 ≤ ‖f1 − f2‖1 + Cg ‖ϑ1 − ϑ2‖2

<
1

2
ε′ +

1

2
ε′ = ε′.

Let G be the space induced by f ∈ F and ‖ϑ− ϑ0‖2 < δ (ε) according to the likelihood function in

(7), then for all G ∈ G induced by F ∈ F , the covering number

N
(
ε′, G

)
≤ N

(
ε′/2, F

)
. (20)

3. Asymptotic analysis. Define

HN =

{
D :

∫
RN (D,ϑ, f) dΠ (ϑ, f) ≥ exp

(
−γ0Nε

′2)} , (21)
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where γ0 ≤ (3 + γ) /4 for γ in Theorem 4 condition 3-b. Lemma 15 implies that as N → ∞,

PN0 (HN )→ 1, where PN0 is characterized by the true DGP with the sample size being N . Hence,

ENg0

[
Π
(
ϑ ∈ Θδ(ε) and f ∈ Fcε

⋂
FN
∣∣∣D)] (22)

=ENg0

[
Π
(
ϑ ∈ Θδ(ε) and f ∈ Fcε

⋂
FN
∣∣∣D)1 (HN )

]
+ o (1)

=
∑
j

ENg0

[
Π
(
ϑ ∈ Θδ(ε) and f ∈ Fcε

⋂
FN,j

∣∣∣D)1 (HN )
]

+ o (1) .

Let Gcε be the induced set by Fcε , and GN,j be the induced set by FN,j in Theorem 4 condition 3-b.

For each j, given (18), we have infg∈Gcε
⋂
GN,j ‖g − g0‖1 ≥ 8ε′, so there exists a ϕ̃N,j (D) for each

Gcε
⋂
GN,j , and we can decompose the posterior probability as follows:

ENg0

[
Π
(
ϑ ∈ Θδ(ε) and f ∈ Fcε

⋂
FN,j

∣∣∣D)1 (HN )
]

(23)

≤ ENg0
ϕ̃N,j(D)+ENg0

[
(1− ϕ̃N,j (D))

∫
Θδ(ε)×Fcε

⋂
FN,j

RN (D,ϑ, f) dΠ (ϑ, f)

]
exp

(
γ0Nε

′2) .
Let γ1,j = N (ε′,GN,j) and γ2,j = Πf (FN,j). For the first term,

ENg0
ϕ̃N,j (D) (24)

≤
√
γ2,j

γ1,j
N
(
ε′,Gcε

⋂
GN,j

)
exp

(
−Nε′2

)
≤
√
N (ε′,GN,j) Πf (FN,j) exp

(
−Nε′2

)
,
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where the second line is given by the test in (19). For the second term, note that

ENg0

[
(1− ϕ̃N,j (D))

∫
Θδ(ε)×Fcε

⋂
FN,j

RN (D,ϑ, f) dΠ (ϑ, f)

]
(25)

=

∫
(1− ϕ̃N (D))

[∫
Θδ(ε)×Fcε

⋂
FN,j

RN (D,ϑ, f) dΠ (ϑ, f)

]
N∏
i=1

g (Di|ϑ0, f0) dD

=

∫
Θδ(ε)×Fcε

⋂
FN,j

[∫
(1− ϕ̃N (D))

N∏
i=1

g (Di|ϑ, f) dD

]
dΠ (ϑ, f)

≤ sup
g∈Gcε

⋂
GN,j

ENg [1− ϕ̃N (D)] ·Π
(

Θδ(ε),Fcε
⋂
FN,j

)
≤ sup
g∈Gcε

⋂
GN,j

ENg [1− ϕ̃N (D)] ·Πf (FN,j)

≤
√
γ1,j

γ2,j
exp

(
−Nε′2

)
·Πf (FN,j)

≤
√
N (ε′,GN,j) Πf (FN,j) exp

(
−Nε′2

)
,

where the second to last line is given by the test in (19). Combining (23), (24), and (25), as N →∞,∑
j

ENg0

[
Π
(
ϑ ∈ Θδ(ε) and f ∈ Fcε

⋂
FN,j

∣∣∣D)1 (HN )
]

≤
∑
j

√
N (ε′,GN,j) Πf (FN,j) exp

(
−Nε′2 (1− γ0)

)
≤
∑
j

√
N (ε′/2,FN,j) Πf (FN,j) exp

(
−Nε′2 (1− γ0)

)
=o
(
exp

(
(1− γ)Nε′2/4

)
exp

(
−Nε′2 (1− γ0)

))
=o
(
exp

(
−Nε′2 (1− γ0 − (1− γ) /4)

))
→0.

The third line converts the covering number from the space of g to the space of f using (20), the

fourth line follows the summability condition of covering numbers as in Theorem 4 condition 3-b,

and the last line is given by γ0 ≤ (3 + γ) /4. Then, according to (22), as N →∞,

ENg0

[
Π
(
ϑ ∈ Θδ(ε) and f ∈ Fcε

⋂
FN
∣∣∣D)]→ 0.

Further applying Markov inequality, we obtain that as N →∞,

Π
(
ϑ ∈ Θδ(ε) and f ∈ Fcε

⋂
FN
∣∣∣D)→ 0,
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in probability with respect to the true DGP.

C.3 Posterior Consistency: (Correlated) Random Coefficients Model

C.3.1 Random Coefficients: Cross-sectional Homoskedasticity

Remark 19. To ensure condition 1 in Theorem 4, we consider space F =
{
f : Ef ‖λ‖

2(1+η)
2 ≤M

}
for some large M > 0. Given Assumption 6(1-e), f0 satisfies this condition when M is large enough.

Let F̄ be the space of all possible underlying distribution of individual heterogeneity f (with or

without bounded 2 (1 + η)-th moments). Then, F ⊆ F̄ . Let Π̄ be the corresponding probability

measure on F̄ . According to Bayes’ theorem, for any event A,

Π (A) = Π̄ (A| F) =
Π̄ (A ∩ F)

Π̄f (F)
.

As the denominator 0 ≤ Π̄f (F) ≤ 1, we have

Π (A) =
Π̄ (A ∩ F)

Π̄f (F)
≥ Π̄ (A ∩ F) .

Thus, to verify condition 1-a in Theorem 4, it suffices to prove that for all ε > 0,

Π̄ ((ϑ, f) : {DKL (g (Di|ϑ0, f0) ‖ g (Di|ϑ, f)) < ε} ∩ F) > 0, (26)

Moreover, based on Doss and Sellke (1982) and Egorov’s Theorem, we can establish that for all

τ ∈ (0, 1), there exist M > 0 such that

Π̄f (F) > 1− τ. (27)

Therefore, we have

Π (A) =
Π̄ (A ∩ F)

Π̄f (F)
<

Π̄ (A ∩ F)

1− τ
≤ Π̄ (A)

1− τ
.

It implies that to verify condition 3 in Theorem 4, it suffices to prove that for all ε > 0 and for some

β, γ > 0,

Π̄f (FcN ) = O (exp (−βN)) , and
∑
j

√
N (ε,FN,j) Π̄f (FN,j) = o

(
exp

(
(1− γ)Nε2

))
. (28)
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Remark 20. Here I demonstrate that if for all ε > 0, Π̄f (DKL (f0 ‖ f) < ε) > 0, then

Π̄f (f : {DKL (f0 ‖ f) < ε} ∩ F) > 0. (29)

Let FKL,ε =
{
f ∈ F̄ : DKL (f0 ‖ f) < ε

}
. First, we can obtain (27) in Remark 19 based on Doss

and Sellke (1982) and Egorov’s Theorem. Then, there exists ε∗ > 0 such that Π̄f (FKL,ε∗) > τ , so

we have

Π̄f (FKL,ε∗ ∩ F) > 0. (30)

(1) If ε ≥ ε∗, the above expression implies Π̄f (FKL,ε ∩ F) > 0, which is equivalent to (29).

(2) If ε < ε∗, let w = ε/ε∗, then for all f∗ ∈ FKL,ε∗ ∩ F , we can construct

f = wf∗ + (1− w) f0. (31)

Thus,

DKL (f0 ‖ f) =

∫
f0 log

f0

f
(32)

≤ w
∫
f0 log

f0

f∗
+ (1− w)

∫
f0 log

f0

f0

< wε∗ = ε,

where the second line is given by the convexity of (− log x). At the same time, when M is sufficiently

large, Ef0 ‖λ‖
2(1+η)
2 ≤M , then,∫

‖λi‖2(1+η)
2 f(λi)dλi = w

∫
‖λi‖2(1+η)

2 f∗(λi)dλi + (1− w)

∫
‖λi‖2(1+η)

2 f0(λi)dλi ≤M. (33)

Combining (32) and (33), we obtain f ∈ FKL,ε ∩ F . Also note that (31) is an invertible linear

mapping from FKL,ε∗ ∩ F to FKL,ε ∩ F , i.e. an isomorphism. Therefore, considering (30) and the

fact that Π̄f has full support,7 we have

Π̄f (FKL,ε ∩ F) > 0.

Proof. (Theorem 7)

7More specifically, for all f with supp (f) ∈ supp (G0), we have f ∈ supp
(
Π̄f

)
(see Theorem 3.2.4 in Ghosh and

Ramamoorthi (2003)). Especially, if G0 has full support on Θ, then Π̄f has full support on F̄ . Here, G0 has full
support on Rdw × S, where S is the space of dw × dw positive definite matrices with the spectral norm (the spectral

norm is induced by the L2-norm on vectors, ‖Ω‖2 = maxx 6=0
‖Ωx‖2
‖x‖2

).
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The individual-specific likelihood function is characterized as

g (Di|ϑ, f) =
∏
t

p
(
xP∗i,t−1 |yi,t−1, ci,0:t−2

)
p (ci0)

∫ ∏
t

φ
(
yit;β

′xi,t−1 + λ′iwi,t−1, σ
2
)
f (λi) dλi.

1. Condition 1-a in Theorem 4. Based on Lemma 1 in Canale and De Blasi (2017), Assumption 6

ensures that the KL property holds for f (the distribution of λ), i.e. for all ε > 0,

Π̄f (f : DKL (f0 ‖ f) < ε) > 0.

Then, Remark 20 shows that

Π̄f (f : {DKL (f0 ‖ f) < ε} ∩ F) > 0. (34)

Now, we need to establish an altered KL property specified on g (the distribution of observables)

based on sufficient condition (26) in Remark 19. The KL divergence of g (Di|ϑ, f) with respect to

g (Di|ϑ0, f0) can be decomposed as

0 ≤
∫
g (Di|ϑ0, f0) log

g (Di|ϑ0, f0)

g (Di|ϑ, f)
dDi (35)

=

∫
g (Di|ϑ0, f0) log

g (Di|ϑ0, f0)

g (Di|ϑ0, f)
dDi +

∫
g (Di|ϑ0, f0) log

g (Di|ϑ0, f)

g (Di|ϑ, f)
dDi.

First term: Crossing out common factors in the numerator and denominator, we have∫
g (Di|ϑ0, f0) log

g (Di|ϑ0, f0)

g (Di|ϑ0, f)
dDi =

∫
g (Di|ϑ0, f0) log

∫ ∏
t φ
(
yit;β

′
0xi,t−1 + λ′iwi,t−1, σ

2
0

)
f0 (λi) dλi∫ ∏

t φ
(
yit;β′0xi,t−1 + λ′iwi,t−1, σ2

0

)
f (λi) dλi

dDi.

We can apply the convolution property of the KL divergence in Lemma 29(1) to the integral over

λi ∫ ∏
t

φ
(
yit;β

′
0xi,t−1 + λ′iwi,t−1, σ

2
0

)
f0 (λi) dλi log

∫ ∏
t φ
(
yit;β

′
0xi,t−1 + λ′iwi,t−1, σ

2
0

)
f0 (λi) dλi∫ ∏

t φ
(
yit;β′0xi,t−1 + λ′iwi,t−1, σ2

0

)
f (λi) dλi

≤
∫ ∏

t

φ
(
yit;β

′
0xi,t−1 + λ′iwi,t−1, σ

2
0

)
f0 (λi) log

f0 (λi)

f (λi)
dλi.
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Then, further integrating the above expression over Di, we have

0 ≤
∫
g (Di|ϑ0, f0) log

g (Di|ϑ0, f0)

g (Di|ϑ0, f)
dDi

=

∫
g (Di|ϑ0, f0) log

∫ ∏
t φ
(
yit;β

′
0xi,t−1 + λ′iwi,t−1, σ

2
0

)
f0 (λi) dλi∫ ∏

t φ (yit;β′xi,t−1 + λ′iwi,t−1, σ2) f0 (λi) dλi
dDi

≤
∫ ∏

t

p
(
xP∗i,t−1 |yi,t−1, ci,0:t−2

)
p (ci0)

[∫ ∏
t

φ
(
yit;β

′
0xi,t−1 + λ′iwi,t−1, σ

2
0

)
f0 (λi) log

f0 (λi)

f (λi)
dλi

]
dDi

=

∫ [∫ ∏
t

p
(
xP∗i,t−1 |yi,t−1, ci,0:t−2

)
p (ci0)

∏
t

φ
(
yit;β

′
0xi,t−1 + λ′iwi,t−1, σ

2
0

)
dDi

]
f0 (λi) log

f0 (λi)

f (λi)
dλi

=DKL (f0 ‖ f) .

According to the KL property on f in (34), define

Sf,ε =
{
f :

{
DKL (f0 ‖ f) <

ε

3

}
∩ F

}
,

then Π̄f (Sf,ε) > 0, and for all f ∈ Sf,ε, the first term

0 ≤
∫
g (Di|ϑ0, f0) log

g (Di|ϑ0, f0)

g (Di|ϑ0, f)
dDi <

ε

3
. (36)

Second term: Given the bounds in (35) and (36), we have∫
g (Di|ϑ0, f0) log

g (Di|ϑ0, f)

g (Di|ϑ, f)
dDi > −

ε

3
.
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Then, we only need to find an upper bound of the second term.

− ε
3
<

∫
g (Di|ϑ0, f0) log

g (Di|ϑ0, f)

g (Di|ϑ, f)
dDi (37)

=

∫
g (Di|ϑ0, f0) log

∫ ∏
t φ
(
yit;β

′
0xi,t−1 + λ′iwi,t−1, σ

2
0

)
f (λi) dλi∫ ∏

t φ (yit;β′xi,t−1 + λ′iwi,t−1, σ2) f (λi) dλi
dDi

=

∫ ∏
t

p
(
xP∗i,t−1 |yi,t−1, ci,0:t−2

)
p (ci0)

∫ ∏
t φ
(
yit;β

′
0xi,t−1 + λ′iwi,t−1, σ

2
0

)
f0 (λi) dλi∫ ∏

t φ
(
yit;β′0xi,t−1 + λ′iwi,t−1, σ2

0

)
f (λi) dλi

·
∫ ∏

t

φ
(
yit;β

′
0xi,t−1 + λ′iwi,t−1, σ

2
0

)
f (λi) dλi log

∫ ∏
t φ
(
yit;β

′
0xi,t−1 + λ′iwi,t−1, σ

2
0

)
f (λi) dλi∫ ∏

t φ (yit;β′xi,t−1 + λ′iwi,t−1, σ2) f (λi) dλi
dDi

≤
∫ ∏

t

p
(
xP∗i,t−1 |yi,t−1, ci,0:t−2

)
p (ci0)

∫ ∏
t φ
(
yit;β

′
0xi,t−1 + λ′iwi,t−1, σ

2
0

)
f0 (λi) dλi∫ ∏

t φ
(
yit;β′0xi,t−1 + λ′iwi,t−1, σ2

0

)
f (λi) dλi

·

[∫ ∏
t

φ
(
yit;β

′
0xi,t−1 + λ′iwi,t−1, σ

2
0

)
f (λi) log

∏
t φ
(
yit;β

′
0xi,t−1 + λ′iwi,t−1, σ

2
0

)∏
t φ (yit;β′xi,t−1 + λ′iwi,t−1, σ2)

dλi

]
dDi

=

∫ ∏
t

p
(
xP∗i,t−1 |yi,t−1, ci,0:t−2

)
p (ci0)

∫ ∏
t

φ
(
yit;β

′
0xi,t−1 + λ′iwi,t−1, σ

2
0

)
f0 (λi) dλi

·

[∫ ∏
t φ
(
yit;β

′
0xi,t−1 + λ′iwi,t−1, σ

2
0

)
f (λi)∫ ∏

t φ
(
yit;β′0xi,t−1 + λ′iwi,t−1, σ2

0

)
f (λi) dλi

log

∏
t φ
(
yit;β

′
0xi,t−1 + λ′iwi,t−1, σ

2
0

)∏
t φ (yit;β′xi,t−1 + λ′iwi,t−1, σ2)

dλi

]
dDi

=

∫ ∏
t

p
(
xP∗i,t−1 |yi,t−1, ci,0:t−2

)
p (ci0)

∫ ∏
t

φ
(
yit;β

′
0xi,t−1 + λ′iwi,t−1, σ

2
0

)
f0 (λi) dλi

·

[∫
φ
(
λi;mi (β0) ,Σi

(
σ2

0

))
f (λi)∫

φ
(
λi;mi (β0) ,Σi

(
σ2

0

))
f (λi) dλi

log

∏
t φ
(
yit;β

′
0xi,t−1 + λ′iwi,t−1, σ

2
0

)∏
t φ (yit;β′xi,t−1 + λ′iwi,t−1, σ2)

dλi

]
dDi,

where

mi (β0) =

(∑
t

wi,t−1w
′
i,t−1

)−1∑
t

wi,t−1

(
yit − β′0xi,t−1

)
, (38)

Σi

(
σ2

0

)
= σ2

0

(∑
t

wi,t−1w
′
i,t−1

)−1

.

The second line in (37) crosses out common factors in the numerator and denominator. The third

line rearranges the expression so that we can apply the convolution property of the KL divergence

in Lemma 29(1) in the fourth line. The fifth line rearranges the expression so that we can cross out

common factors in the numerator and denominator in the last line. Note that the log of the ratio
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of normal distributions has an analytical form,

log

∏
t φ
(
yit;β

′
0xi,t−1 + λ′iwi,t−1, σ

2
0

)∏
t φ (yit;β′xi,t−1 + λ′iwi,t−1, σ2)

=
T

2

(
log σ2 − log σ2

0

)
+

1

2

∑
t

(
yit − β′xi,t−1 − λ′iwi,t−1

)2( 1

σ2
− 1

σ2
0

)

+
∑
t

(yit − β′xi,t−1 − λ′iwi,t−1)2 − (yit − β′0xi,t−1 − λ′iwi,t−1)2

2σ2
0

=
T

2

(
log σ2 − log σ2

0

)
+

1

2

∑
t

(
yit − β′xi,t−1 − λ′iwi,t−1

)2( 1

σ2
− 1

σ2
0

)

+
∑
t

(β′xi,t−1)2 − (β′0xi,t−1)2 − 2 (yit − λ′iwi,t−1) (β − β0)′ xi,t−1

2σ2
0

. (39)

Define

Sσ2,ε =

{
σ2 ∈ σ2

0

[
1, exp

(
2ε

3T

))}
,

then Π̄σ2

(
Sσ2,ε

)
> 0, and for all σ2 ∈ Sσ2,ε, the sum of the first two terms is less than ε/3.

Note that Sσ2,ε is asymmetric with respect to σ2
0 because we only need to find an upper bound of∫

g (Di|ϑ0, f0) log g(Di|ϑ0,f)
g(Di|ϑ,f) dDi. For the last term, if ‖β − β0‖2 ≤ δβ for some δβ > 0,∣∣∣(β′xi,t−1

)2 − (β′0xi,t−1

)2∣∣∣ ≤ 2 ‖β0‖2 ‖β − β0‖2 ‖xi,t−1‖22 + ‖β − β0‖22 ‖xi,t−1‖22 (40)

≤ (2 ‖β0‖2 + δβ) ‖β − β0‖2 ‖xi,t−1‖22
. ‖β − β0‖2 ‖xi,t−1‖22 .

At the same time,

∣∣2 (yit − λ′iwi,t−1

)
(β − β0)′ xi,t−1

∣∣ ≤ ‖β − β0‖2 · 2 ‖xi,t−1‖2
(
|yit|+ ‖λi‖2 ‖wi,t−1‖2

)
(41)

≤ ‖β − β0‖2
(

2 ‖xi,t−1‖22 + y2
it + ‖λi‖22 ‖wi,t−1‖22

)
. ‖β − β0‖2

(
y2
it + ‖xi,t−1‖22 + ‖λi‖22

)
.

The last line follows that wi,0:T−1 is bounded due to Assumption 5(1). Given that T is finite,

combining (40) and (41), the last term in (39) is bounded as follows:

∑
t

(β′xi,t−1)2 − (β′0xi,t−1)2 − 2 (yit − λ′iwi,t−1) (β − β0)′ xi,t−1

2σ2
0

(42)

. ‖β − β0‖2

[∑
t

(
y2
it + ‖xi,t−1‖22

)
+ ‖λi‖22

]
.
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Note that for all f ∈ F , the second moment of λi is bouned by some M2 > 0. We can treat f as

a “prior,” φ as a Gaussian “likelihood,” and
φ(λi;mi(β0),Σi(σ2

0))f(λi)∫
φ(λi;mi(β0),Σi(σ2

0))f(λi)dλi
as the “posterior,” then the

second moment with respect to the “posterior”∫
φ
(
λi;mi (β0) ,Σi

(
σ2

0

))
f (λi)∫

φ
(
λi;mi (β0) ,Σi

(
σ2

0

))
f (λi) dλi

‖λi‖22 dλi (43)

.
(
‖mi (β0)‖22 + tr

(
Σi

(
σ2

0

))
+M2

)
.

[∑
t

(
y2
it + ‖xi,t−1‖22

)
+ 1

]
.

Assumption 5(2) ensures that tr
(
Σi

(
σ2

0

))
is bounded above. Plugging (43) back to (42), we see

that the expression in the brackets in the last line of (37) is bounded as follows:∫
φ
(
λi;mi (β0) ,Σi

(
σ2

0

))
f (λi)∫

φ
(
λi;mi (β0) ,Σi

(
σ2

0

))
f (λi) dλi

log

∏
t φ
(
yit;β

′
0xi,t−1 + λ′iwi,t−1, σ

2
0

)∏
t φ (yit;β′xi,t−1 + λ′iwi,t−1, σ2)

dλi (44)

. ‖β − β0‖2

[∑
t

(
y2
it + ‖xi,t−1‖22

)
+ 1

]
.

Assumptions 6(1-e) and 5(1,3) ensure that Ey2
it and E ‖xi,t−1‖22 exist, so the rest of the integration

in (37) is bounded by Cβ ‖β − β0‖2 . Define

Sβ,ε =

{
‖β − β0‖2 < min

(
ε

3Cβ
, δβ

)}
,

then Π̄β (Sβ,ε) > 0, and for all β ∈ Sβ,ε, the integral associated with the last term in (39) is less

than ε/3, i.e.∫ ∏
t

p
(
xP∗i,t−1 |yi,t−1, ci,0:t−2

)
p (ci0)

∫ ∏
t

φ
(
yit;β

′
0xi,t−1 + λ′iwi,t−1, σ

2
0

)
f0 (λi) dλi

·

[∫
φ
(
λi;mi (β0) ,Σi

(
σ2

0

))
f (λi)∫

φ
(
λi;mi (β0) ,Σi

(
σ2

0

))
f (λi) dλi

∑
t

(β′xi,t−1)2 − (β′0xi,t−1)2 − 2 (yit − λ′iwi,t−1) (β − β0)′ xi,t−1

2σ2
0

dλi

]
dDi

≤ ε/3.

Therefore, for all
(
β, σ2, f

)
∈ Sβ,ε × Sσ2,ε × Sf,ε, DKL (g (Di|ϑ0, f0) ‖ g (Di|ϑ, f)) < ε. Consid-

ering that Π̄
((
β, σ2, f

)
∈ Sβ,ε × Sσ2,ε × Sf,ε

)
> 0 and that Sf,ε ⊆ F , we prove that for all ε > 0,

Π̄ ((ϑ, f) : DKL (g (Di|ϑ0, f0) ‖ g (Di|ϑ, f)) < ε) > 0.
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2. Condition 1-b in Theorem 4. For all ϑ1, ϑ2 ∈ Θ and f ∈ F ,

‖g (Di|ϑ1, f)− g (Di|ϑ2, f)‖1

≤
∑
τ

∫ ∏
t

p
(
xP∗i,t−1 |yi,t−1, ci,0:t−2

)
p (ci0)

[
τ−1∏
t=1

φ
(
yit;β

′
1xi,t−1 + λ′iwi,t−1, σ

2
1

) T∏
t=τ+1

φ
(
yit;β

′
2xi,t−1 + λ′iwi,t−1, σ

2
2

)
·
∣∣∣ φ (yiτ ;β′1xi,τ−1 + λ′iwi,τ−1, σ

2
1

)
− φ

(
yiτ ;β′2xi,τ−1 + λ′iwi,τ−1, σ

2
2

) ∣∣∣] · f (λi) dλidDi

=
∑
τ

∫ τ−1∏
t=2

p
(
xP∗i,t−1 |yi,t−1, ci,0:t−2

)
p (ci0)

[
τ−1∏
t=1

φ
(
yit;β

′
1xi,t−1 + λ′iwi,t−1, σ

2
1

)
·
∣∣∣ φ (yiτ ;β′1xi,τ−1 + λ′iwi,τ−1, σ

2
1

)
− φ

(
yiτ ;β′2xi,τ−1 + λ′iwi,τ−1, σ

2
2

) ∣∣∣] · f (λi) dyi,1:τdx
P∗
i,1:τ−1dci0dλi.

The last line is given by integrating out yit and xP∗i,t−1 iteratively for t = T, T−1, · · · , τ+1. According

to Lemma 31 on L1-distance between normal distributions,∫ ∣∣∣ φ (yiτ ;β′1xi,τ−1 + λ′iwi,τ−1, σ
2
1

)
− φ

(
yiτ ;β′2xi,τ−1 + λ′iwi,τ−1, σ

2
2

) ∣∣∣ dyiτ
≤

√
σ2

1

σ2
2

− ln
σ2

1

σ2
2

− 1 + σ−2
2

[
(β1 − β2)′ xi,τ−1

]2
≤

√
σ2

1

σ2
2

− ln
σ2

1

σ2
2

− 1 +

√
σ−2

2

[
(β1 − β2)′ xi,τ−1

]2
.

The last line follows the facts that log (1 + x) ≤ x for all x > −1 and that
√
x+ y ≤

√
x +
√
y for

all x, y ≥ 0. For the first term, note that 0 ≤ x− log (1 + x) ≤ x2

1+x for all x > −1. Given condition

3-b in Theorem 7, √
σ2

1

σ2
2

− ln
σ2

1

σ2
2

− 1 ≤
∣∣σ2

1 − σ2
2

∣∣2
σ2

1σ
2
2

≤ σ̄2 − σ2

(σ2)2

∣∣σ2
1 − σ2

2

∣∣ .
For the second term, √

σ−2
2

[
(β1 − β2)′ xi,τ−1

]2 ≤ 1√
σ2
‖β1 − β2‖2 ‖xi,τ−1‖2 .

Ef ‖xi,τ−1‖2 exists based on Assumption 5(3) and the fact that for all f ∈ F , the second moment

of λi is bouned by some M2 > 0. Therefore, for all ϑ1, ϑ2 ∈ Θ, there exists Cg > 0 not depending

on f such that

‖g (Di|ϑ1, f)− g (Di|ϑ2, f)‖1 ≤ Cg ‖ϑ1 − ϑ2‖2 .

3. Condition 1-c in Theorem 4. This part of the proof builds on the proofs of Theorem 2 in

Nguyen (2013) and Lemma 1 in Su et al. (2020). For notation simplicity, let f̂ denote the Fourier

A-24



transform of f . Let K be an density on R. Suppose that (1) K is symmetric and has a bounded

2 (1 + η) moment, where η is defined in Assumption 6(1-e); and (2) its Fourier transform K̂ is

continuous with supp
(
K̂
)

= [−1, 1]. Denote the mollifier Kδ (υ) = δ−dw
∏dw
j=1K (υj/δ), where

υ = (υ1, υ2, · · · , υdw)′ ∈ Rdw . Let f ∗ Kδ be the convolution of f and Kδ. Following the triangular

inequality,

W 2
2 (f, f0) ≤W 2

2 (f, f ∗ Kδ) +W 2
2 (f0, f0 ∗ Kδ) +W 2

2 (f ∗ Kδ, f0 ∗ Kδ) .

First and second terms: Consider coupling (λ, λ+ υ), where the marginal distributions of λ and υ

are f and Kδ, respectively. Then, by the definition of the Wasserstein metric,

W 2
2 (f, f ∗ Kδ) ≤

∫
‖λ− (λ+ υ)‖22 f (λ)Kδ (υ) dλdυ

=

∫ [∫
f (λ) dλ

]
‖υ‖22Kδ (υ) dυ

=

∫
‖υ‖22 ·

1

δdw

dw∏
j=1

K
(υj
δ

)
dυ.

Define υ̃ = υ/δ, then

∫
‖υ‖22 ·

1

δdw

dw∏
j=1

K
(υj
δ

)
dυ = δ2

∫
‖υ̃‖22 ·

dw∏
j=1

K (υ̃) dυ̃ . δ2.

The last inequality obtains as the second moment of K is bounded. Similarly, we have the second

term W 2
2 (f0, f0 ∗ Kδ) . δ2 as well.

Third term: Let z be a generic variable. According to Theorem 6.15 in Villani (2009),

W 2
2 (f ∗ Kδ, f0 ∗ Kδ)

.
∫
‖z‖22 |(f − f0) ∗ Kδ (z)| dz

=

∫
‖z‖2≤M

‖z‖22 |(f − f0) ∗ Kδ (z)| dz +

∫
‖z‖2>M

‖z‖22 |(f − f0) ∗ Kδ (z)| dz,

for some large M > 0 that could depend on ‖g (Di|ϑ0, f)− g (Di|ϑ0, f0)‖1.

Third term - first part: Similar to (38), define

mi =

(∑
t

wi,t−1w
′
i,t−1

)−1∑
t

wi,t−1

(
yit − β′0xi,t−1

)
, Σi = σ2

0

(∑
t

wi,t−1w
′
i,t−1

)−1

.
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Then,

mi = λi + ūi, ūi ∼ φ̄ (ūi) =

∫
φ (ūi; 0,Σi) p (wi,0:T−1) dwi,0:T−1,

and the distribution of mi is

g̃ (mi) = p (mi|ϑ0, f) = f ∗ φ̄ (mi) ,

Also, denote g̃0 (mi) = p (mi|ϑ0, f0) . Let ũit = ỹit − β′0x̃i,t−1 be the output from the orthogo-

nal forward differencing in (10) evaluated at β0, and consider the change of variables from Di =(
yi,1:T , x

P∗
i,1:T−1, ci0

)
to Di =

(
mi, ũi,1:T−dw , x

P∗
i,1:T−1, ci0

)
. Then, individual-specific likelihood func-

tion becomes

gD (Di|ϑ0, f)

=
∏
t

p
(
xP∗i,t−1 |mi, ũi,1:T−dw , ci,0:t−2

)
p (ci0)

T−dw∏
t=1

φ
(
ũit; 0, σ2

0

) ∫
φ (mi;λi,Σi) f (λi) dλi.

Note that the L1-norm is preserved under the change of variables, so we have

‖g (Di|ϑ0, f)− g (Di|ϑ0, f0)‖1
= ‖gD (Di|ϑ0, f)− gD (Di|ϑ0, f0)‖1

=

∫ ∣∣∣∣∣
∫ ∏

t

p
(
xP∗i,t−1 |mi, ũi,1:T−dw , ci,0:t−2

)
p (ci0)

T−dw∏
t=1

φ
(
ũit; 0, σ2

0

)
·φ (mi;λi,Σi) (f (λi)− f0 (λi)) dλi| dDi

=

∫ ∏
t

p
(
xP∗i,t−1 |mi, ũi,1:T−dw , ci,0:t−2

)
p (ci0)

T−dw∏
t=1

φ
(
ũit; 0, σ2

0

)
·
∣∣∣∣∫ φ (mi;λi,Σi) (f (λi)− f0 (λi)) dλi

∣∣∣∣ dDi.
After iteratively integrating out

(1)
∫
p
(
xP∗i,t−1 |mi, ũi,1:T−dw , ci,0:t−2

)
dxP∗i,t−1 = 1 for t = T, T − 1, · · · , 2,

(2)
∫
p (c̃i0) dc̃i0 = 1 where c̃i0 = ci0\wi,0:T−1,

(3)
∫
φ
(
ũit; 0, σ2

0

)
dũit = 1 for t = 1, · · · , T − dw,
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we are left with∫ ∣∣∣∣∫ φ (mi;λi,Σi) (f (λi)− f0 (λi)) dλi

∣∣∣∣ p (wi,0:T−1) dwi,0:T−1dmi (45)

≥
∫ ∣∣∣∣∫ [∫ φ (mi;λi,Σi) p (wi,0:T−1) dwi,0:T−1

]
(f (λi)− f0 (λi)) dλi

∣∣∣∣ dmi

=

∫ ∣∣∣∣∫ φ̄ (mi − λi) (f (λi)− f0 (λi)) dλi

∣∣∣∣ dmi

= ‖g̃ − g̃0‖1

Define K∗δ such that Kδ = φ̄ ∗ K∗δ . Then, its Fourier transform is K̂∗δ = K̂δ
/

ˆ̄φ . Following the

Cauchy–Schwarz inequality,∫
‖z‖2≤M

‖z‖22 |(f − f0) ∗ Kδ (z)| dz (46)

≤

(∫
‖z‖2≤M

‖z‖42 dz
∫
‖z‖2≤M

|(f − f0) ∗ Kδ (z)|2 dz

)1/2

≤M5/2 ‖(f − f0) ∗ Kδ‖2
=M5/2

∥∥(f − f0) ∗
(
φ̄ ∗ K∗δ

)∥∥
2

=M5/2 ‖(g̃ − g̃0) ∗ K∗δ‖2
≤M5/2 ‖g̃ − g̃0‖1 ‖K

∗
δ‖2 .

Based on the Plancherel theorem,

‖K∗δ‖
2
2 .

∥∥∥K̂∗δ∥∥∥2

2
=

∫ (
K̂δ (ξ)

ˆ̄φ (ξ)

)2

dξ (47)

.
∫
‖ξ‖2≤

1
δ

(
ˆ̄φ (ξ)

)−2
dξ

=

∫
‖ξ‖2≤

1
δ

(∫
φ
(
ξ; 0,Σ−1

i

)
p (wi,0:T−1) dwi,0:T−1

)−2

dξ

.
∫
‖ξ‖2≤

1
δ

exp

(
dwσ

2
0

mw
ξ2

)
dξ

. exp

(
dwσ

2
0

mwδ2

)
.

The second line is obtained by construction as K̂ is continuous with supp
(
K̂
)

= [−1, 1]. The

fourth line follows Assumption 5(1,2)—mw is the lower bound of the eigenvalues of
∑

twi,t−1w
′
i,t−1,

and the upper bound of the eigenvalues of
∑

twi,t−1w
′
i,t−1 exists due to the boundedness of wi,0:T−1.
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Combining (45), (46), and (47), the first part of the third term∫
‖z‖2≤M

‖z‖22 |(f − f0) ∗ Kδ (z)| dz .M5/2 exp

(
dwσ

2
0

2mwδ2

)
‖g (Di|ϑ0, f)− g (Di|ϑ0, f0)‖1 .

Third term - second part:∫
‖z‖2>M

‖z‖22 |(f − f0) ∗ Kδ (z)| dz

≤M−2η

∫
‖z‖2>M

‖z‖2(1+η)
2 |(f − f0) ∗ Kδ (z)| dz

≤M−2η

∫
‖z‖2(1+η)

2 (f + f0) ∗ Kδ (z) dz

.M−2η

∫ (
‖z − υ‖2(1+η)

2 + ‖υ‖2(1+η)
2

)
(f + f0) (z − υ)Kδ (υ) dzdυ

=M−2η

(∫
‖λ‖2(1+η)

2 (f + f0) (λ) dλ+

∫
‖υ‖2(1+η)

2 Kδ (υ) dυ

)
.M−2η.

Note that the 2 (1 + η)-th moment of Kδ exists by construction, the 2 (1 + η)-th moment of f0 exists

based on Assumption 6(1-e), and the 2 (1 + η)-th moment of f exists as we consider space F .

In summary: We have

W 2
2 (f, f0) . δ2 +M5/2 exp

(
dwσ

2
0

2mwδ2

)
‖g (Di|ϑ0, f)− g (Di|ϑ0, f0)‖1 +M−2η. (48)

When ‖g (Di|ϑ0, f)− g (Di|ϑ0, f0)‖1 < 1, we have log ‖g (Di|ϑ0, f)− g (Di|ϑ0, f0)‖1 < 0. We can

choose

M = ‖g (Di|ϑ0, f)− g (Di|ϑ0, f0)‖−v1
1 ,

δ =

√
dwσ2

0

2mw

(
− log

(
M

5
2

+v2 ‖g (Di|ϑ0, f)− g (Di|ϑ0, f0)‖1
))−1/2

=

√
dwσ2

0

2mw

(
1− 5

2v1 − v1v2

) (− log ‖g (Di|ϑ0, f)− g (Di|ϑ0, f0)‖1)−1/2 ,
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for some v1, v2 > 0 and 5
2v1 + v1v2 < 1. Then, the three terms in (48) become

δ2 . (− log ‖g (Di|ϑ0, f)− g (Di|ϑ0, f0)‖1)−1 ,

M5/2 exp

(
dwσ

2
0

2mwδ2

)
‖g (Di|ϑ0, f)− g (Di|ϑ0, f0)‖1

= ‖g (Di|ϑ0, f)− g (Di|ϑ0, f0)‖v1v2
1 ,

M−2η = ‖g (Di|ϑ0, f)− g (Di|ϑ0, f0)‖2ηv1
1 .

The second and third terms are dominated by the first term. Therefore, there exists CW > 0 such

that

C (‖g (Di|ϑ0, f)− g (Di|ϑ0, f0)‖1) = CW · (− log ‖g (Di|ϑ0, f)− g (Di|ϑ0, f0)‖1)−1/2 ≥ 0

is an increasing function with limx→0 C (x) = 0 satisfying condition 1-c in Theorem 4.

4. Condition 2 in Theorem 4. After orthogonal forward differencing in (8) and (9), we can estimate

β̂GMM =

∑
i,t

x̃i,t−1x̃
′
i,t−1

−1∑
i,t

x̃i,t−1ỹit

 ,

σ̂2
GMM =

1

N (T − dw)

∑
i,t

ỹ2
it −

∑
i,t

x̃i,t−1ỹit

′∑
i,t

x̃i,t−1x̃
′
i,t−1

−1∑
i,t

x̃i,t−1ỹit

 ,

given Assumption 1(2-c), i.e. E
[∑

t x̃i,t−1x̃
′
i,t−1

]
has full rank. Suppose the alternative region Θc ={(

β, σ2
)

: ‖β − β0‖2 > ∆ or
∣∣σ2 − σ2

0

∣∣ > ∆′
}

. Define test

ϕN (D) = 1

(∥∥∥β̂GMM − β0

∥∥∥
2
>

∆

2
or
∣∣σ̂2
GMM − σ2

0

∣∣ > ∆′

2

)
.

Under the null hypothesis,

β̂GMM
d−→ N

(
β0,

σ2
0

N
E
[∑

t

x̃i,t−1x̃
′
i,t−1

]−1

)
,

σ̂2
GMM

d−→ N

(
σ2

0,
2σ2

0

N (T − dw)− dx

)
.
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Assumption 5 ensures the existence of these asymptotic variances. Then,

Eϑ0,f0ϕN (D) = PN0
(∥∥∥β̂GMM − β0

∥∥∥
2
>

∆

2
or
∣∣σ̂2
GMM − σ2

0

∣∣ > ∆′

2

)
(49)

≤ PN0
(∥∥∥β̂GMM − β0

∥∥∥
2
>

∆

2

)
+ PN0

(∣∣σ̂2
GMM − σ2

0

∣∣ > ∆′

2

)
≤

dx∑
j=1

PN0
(∣∣∣β̂GMM − β0,j

∣∣∣ > ∆

2
√
dx

)
+ PN0

(∣∣σ̂2
GMM − σ2

0

∣∣ > ∆′

2

)

≤
2dxφ

(
∆

2
√
dx

/√
σ2

0
N Λ−1

min,xx

)
∆

2
√
dx

+

2φ

(
∆′

2

/√
2σ2

0
N(T−dw)−dx

)
∆′

2

=
4d

3/2
x

∆
φ

(
∆

2

√
Λmin,xxN

dxσ2
0

)
+

4

∆′
φ

(
∆′

2

√
N (T − dw)− dx

2σ2
0

)
,

where Λmin,xx is the smallest eigenvalue of E
[∑

t x̃i,t−1x̃
′
i,t−1

]
. The third line is given by the fact

that
∥∥∥β̂GMM − β0

∥∥∥
2
> ∆

2 implies that
∣∣∣β̂GMM − β0,j

∣∣∣ > ∆
2
√
dx

for at least one j = 1, · · · , dx. The

fourth line follows the bound of the tail of a standard normal distribution in Lemma 32. Under the

alternative hypothesis,

β̂GMM
d−→ N

(
β,

σ2

N
E
[∑

t

x̃i,t−1x̃
′
i,t−1

]−1

)
,

σ̂2
GMM

d−→ N

(
σ2,

2σ2

N (T − dw)− dx

)
.

Then,

Eϑ,f [1− ϕN (D)] = PNϑ,f
(∥∥∥β̂GMM − β0

∥∥∥
2
≤ ∆

2
and

∣∣σ̂2
GMM − σ2

0

∣∣ ≤ ∆′

2

)
(50)

≤ PNϑ,f
(∥∥∥β̂GMM − β

∥∥∥
2
>

∆

2
and

∣∣σ̂2
GMM − σ2

∣∣ > ∆′

2

)
≤ PNϑ,f

(∥∥∥β̂GMM − β
∥∥∥

2
>

∆

2
or
∣∣σ̂2
GMM − σ2

∣∣ > ∆′

2

)
≤ 4d

3/2
x

∆
φ

(
∆

2

√
Λmin,xxN

dxσ2

)
+

4

∆′
φ

(
∆′

2

√
N (T − dw)− dx

2σ2

)
.

The second line is given by the triangular inequality. The last line follows the same argument as

the calculation under the null hypothesis. As both σ2
0 and σ2 are bounded above by σ̄2 (condition

3 in Theorem 7), we can combine (49) and (50) and set

Cϕ = min

{
∆2Λmin,xx

8dxσ̄2
,

∆′2 (T − dw)

16σ̄2

}
,
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which leads to

Eϑ0,f0ϕN (D) = O
(
e−CϕN

)
, and sup

ϑ∈Θc,f∈F
Eϑ,f [1− ϕN (D)] = O

(
e−CϕN

)
.

5. Condition 3 in Theorem 4. According to Corollary 1 in Canale and De Blasi (2017), Assumption

6(2) ensures that for some c1, c2, c3 > 0, r > (dw − 1) /2, and κ > dw (dw − 1), for sufficiently large

λ∗ > 0,

G0 (‖µ‖2 > λ∗) = O
(
λ
−2(r+1)
∗

)
,

G0 (Λ1 > λ∗) = O (exp (−c1λ
c2
∗ )) ,

G0

(
Λdw <

1

λ∗

)
= O

(
λ−c3∗

)
,

G0

(
Λ1

Λdw
> λ∗

)
= O

(
λ−κ∗

)
,

where Λ1 and Λdw are the largest and smallest eigenvalues of Ω−1, respectively. Then, we can

establish the sieve property in terms of Π̄f based on Theorem 2 in Canale and De Blasi (2017). It

further leads to the sieve property in terms of Πf according to sufficient condition (28) in Remark

19.

C.3.2 Correlated Random Coefficients: Cross-sectional Homoskedasticity

The proofs of correlated random coefficients models build on Pati et al. (2013)’s work on univariate

conditional density estimation, and the current proof introduces two major extensions: multivariate

conditional density estimation based on location-scale mixture, and deconvolution and dynamic

panel data structures. For conditional distributions, let f (h, c0) = f (h|c0) q0 (c0), where q0 is true

marginal density of c0. Then, the induced q0-integrated L1-distance is defined as

‖f − f0‖1 = ‖f (h|c0) q0 (c0)− f0 (h|c0) q0 (c0)‖1

=

∫ [∫
|f (λ|c0)− f0 (λ|c0)| dλ

]
q0 (c0) dc0,

the induced q0-integrated KL divergence is

DKL (f0 ‖ f) = DKL (f (h|c0) q0 (c0) ‖ f0 (h|c0) q0 (c0))

=

∫ [∫
f0 (λ|c0) log

f0 (λ|c0)

f (λ|c0)
dλ

]
q0 (c0) dc0,
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and the induced second Wasserstein distance is

W2 (f, f0) = W2 (f (h|c0) q0 (c0) , f0 (h|c0) q0 (c0))

≤
(∫

W 2
2 (f0 (λ|c0) , f (λ|c0)) q0 (c0) dc0

)1/2

.

Proof. (Theorem 10)

The individual-specific likelihood function is characterized as

g (Di|ϑ, f) =
∏
t

p
(
xP∗i,t−1 |yi,t−1, ci,0:t−2

) ∫ ∏
t

φ
(
yit;β

′xi,t−1 + λ′iwi,t−1, σ
2
)
f (λi |ci0 ) q0 (ci0) dλi.

1. Condition 1-a in Theorem 4. Assumptions 8 and 9(1,2,3-a) ensure the induced q0-integrated KL

property on f , i.e. for all ε > 0,

Π̄f (f : DKL (f0 ‖ f) < ε) > 0.

Pati et al. (2013) Theorem 5.3 proved it for univariate λ. Here, for multivariate λ, we work with

the spectral norm for the covariance matrices Ω and consider ‖Ω‖2 ∈ [ω, ω̄] as the approximating

compact set in the proof of Lemma 5.5, Theorem 5.6, and Corollary 5.7 in Pati et al. (2013). The

rest of the proof of part 1 parallels the random coefficients case in Appendix C.3.1, except for

changing f (λi) and p (ci0) to f (λi |ci0 ) and q0 (ci0), respectively, and modifying (43) and (44) for

the second term: let

M2c (c0) =

∫
‖λ‖22 fλ (λ|c0) dλ,

then, as we consider space F , for some M2 > 0,∫
M2c (c0) q0 (c0) dc0 ≤M2. (51)

Now (43) becomes∫
φ
(
λi;mi (β0) ,Σi

(
σ2

0

))
f (λi|ci0)∫

φ
(
λi;mi (β0) ,Σi

(
σ2

0

))
f (λi|ci0) dλi

‖λi‖22 dλi

. ‖mi (β0)‖22 + tr
(
Σi

(
σ2

0

))
+M2c (ci0) .

∑
t

(
y2
it + ‖xi,t−1‖22

)
+M2c (ci0) + 1,
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and (44) turns to be∫
φ
(
λi;mi (β0) ,Σi

(
σ2

0

))
f (λi)∫

φ
(
λi;mi (β0) ,Σi

(
σ2

0

))
f (λi) dλi

log

∏
t φ
(
yit;β

′
0xi,t−1 + λ′iwi,t−1, σ

2
0

)∏
t φ (yit;β′xi,t−1 + λ′iwi,t−1, σ2)

dλi

. ‖β − β0‖2

[∑
t

(
y2
it + ‖xi,t−1‖22

)
+M2c (ci0) + 1

]
.

Consider (51), once we integrate out ci0, there still exists a constant Cβ > 0 as on page A-23.

2. Condition 1-b in Theorem 4. Similar to the random coefficients case in Appendix C.3.1, except

changing f (λi) and p (ci0) to f (λi |ci0 ) and q0 (ci0), respectively.

3. Condition 1-c in Theorem 4. This part of the proof is similar to the random coefficients case

in Appendix C.3.1. Denote W2 (f0, f |c0) = W2 (f0 (λ|c0) , f (λ|c0)) . According to the q0-induced

Wasserstein metric,

W2 (f, f0) = W2 (f (h|c0) q0 (c0) , f0 (h|c0) q0 (c0))

≤
(∫

W 2
2 (f0 (λ|c0) , f (λ|c0)) q0 (c0) dc0

)1/2

.

Following the triangular inequality,∫
W 2

2 (f, f0|c0) q0 (c0) dc0

≤
∫ (

W 2
2 (f, f ∗ Kδ|c0) +W 2

2 (f0, f0 ∗ Kδ|c0) +W 2
2 (f ∗ Kδ, f0 ∗ Kδ|c0)

)
q0 (c0) dc0.

First and second terms: Consider coupling (λ, λ+ υ), where the marginal distributions of λ and υ

are f (λ|c0) and Kδ, respectively. Then, as the second moment of K is bounded, we have the first

two terms ∫ (
W 2

2 (f, f ∗ Kδ|c0) +W 2
2 (f0, f0 ∗ Kδ|c0)

)
q0 (c0) dc0 . δ2.

Third term: Let z be a generic variable. According to Theorem 6.15 in Villani (2009),∫
W 2

2 (f ∗ Kδ, f0 ∗ Kδ|c0) q0 (c0) dc0

.
∫
‖z‖22 |(f − f0) ∗ Kδ (z|c0)| q0 (c0) dzdc0

=

∫
‖z‖2≤M

‖z‖22 |(f − f0) ∗ Kδ (z|c0)| q0 (c0) dzdc0

+

∫
‖z‖2>M

‖z‖22 |(f − f0) ∗ Kδ (z|c0)| q0 (c0) dzdc0,

for some large M > 0 that could depend on ‖g (Di|ϑ0, f)− g (Di|ϑ0, f0)‖1.
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Third term - first part: Define

mi =

(∑
t

wi,t−1w
′
i,t−1

)−1∑
t

wi,t−1

(
yit − β′0xi,t−1

)
, Σi = σ2

0

(∑
t

wi,t−1w
′
i,t−1

)−1

.

Conditional on ci0, we have

mi = λi + ūi, ūi ∼ φΣi (ūi) = φ (mi; 0,Σi) ,

and the (conditional) distribution of mi is

g̃ (mi|ci0) = p (mi| ci0, ϑ0, f) = f ∗ φΣi (mi| ci0) ,

Also, denote g̃0 (mi|ci0) = f0 ∗ φΣi (mi| ci0) . Again, consider the change of variables from Di =(
yi,1:T , x

P∗
i,1:T−1, ci0

)
to Di =

(
mi, ũi,1:T−dw , x

P∗
i,1:T−1, ci0

)
. Then, individual-specific likelihood func-

tion becomes

gD (Di|ϑ0, f)

=
∏
t

p
(
xP∗i,t−1 |mi, ũi,1:T−dw , ci,0:t−2

) T−dw∏
t=1

φ
(
ũit; 0, σ2

0

) ∫
φ (mi;λi,Σi) f (λi|ci0) q0 (ci0) dλi.

Note that the L1-norm is preserved under the change of variables, so we have

‖g (Di|ϑ0, f)− g (Di|ϑ0, f0)‖1
= ‖gD (Di|ϑ0, f)− gD (Di|ϑ0, f0)‖1

=

∫ ∣∣∣∣∣
∫ ∏

t

p
(
xP∗i,t−1 |mi, ũi,1:T−dw , ci,0:t−2

) T−dw∏
t=1

φ
(
ũit; 0, σ2

0

)
· φ (mi;λi,Σi) (f (λi|ci0)− f0 (λi|ci0)) dλi| q0 (ci0) dDi

=

∫ ∏
t

p
(
xP∗i,t−1 |mi, ũi,1:T−dw , ci,0:t−2

) T−dw∏
t=1

φ
(
ũit; 0, σ2

0

)
·
∣∣∣∣∫ φ (mi;λi,Σi) (f (λi|ci0)− f0 (λi|ci0)) dλi

∣∣∣∣ q0 (ci0) dDi.

After iteratively integrating out

(1)
∫
p
(
xP∗i,t−1 |mi, ũi,1:T−dw , ci,0:t−2

)
dxP∗i,t−1 = 1 for t = T, T − 1, · · · , 2,

(2)
∫
φ
(
ũit; 0, σ2

0

)
dũit = 1 for t = 1, · · · , T − dw,
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we are left with ∫ ∣∣∣∣∫ φ (mi;λi,Σi) (f (λi|ci0)− f0 (λi|ci0)) dλi

∣∣∣∣ q0 (ci0) dci0dmi (52)

=

∫
‖g̃ (·|ci0)− g̃0 (·|ci0)‖1 q0 (ci0) dci0.

Given wi,0:T−1 satisfying Assumptions 5(2) and 8, we define K∗δ,w such that Kδ = φΣi ∗ K∗δ,w, where

w in the subscript indicates that K∗δ,w depends on w = wi,0:T−1. Then, the Fourier transform of

K∗δ,w is K̂∗δ,w = K̂δ
/
φ̂Σi . Following the Cauchy–Schwarz inequality,

∫
‖z‖2≤M

‖z‖22 |(f − f0) ∗ Kδ (z|c0)| dz (53)

≤

(∫
‖z‖2≤M

‖z‖42 dz
∫
‖z‖2≤M

|(f − f0) ∗ Kδ (z|c0)|2 dz

)1/2

≤M5/2 ‖(f − f0) ∗ Kδ (·|c0)‖2
=M5/2

∥∥(f − f0) ∗
(
φΣi ∗ K∗δ,w

)
(·|c0)

∥∥
2

=M5/2
∥∥(g̃ (·|c0)− g̃0 (·|c0)) ∗ K∗δ,w (·|w)

∥∥
2

≤M5/2 ‖g̃ (·|c0)− g̃0 (·|c0)‖1
∥∥K∗δ,w (·|w)

∥∥
2
.

Based on the Plancherel theorem,

∥∥K∗δ,w (·|w)
∥∥2

2
.
∥∥∥K̂∗δ,w (·|w)

∥∥∥2

2
=

∫ (
K̂δ (ξ)

φ̂Σi (ξ)

)2

dξ (54)

.
∫
‖ξ‖2≤

1
δ

(
φ̂Σi (ξ)

)−2
dξ

.
∫
‖ξ‖2≤

1
δ

exp

(
dwσ

2
0

mw
ξ2

)
dξ

. exp

(
dwσ

2
0

mwδ2

)
.

The second line is obtained by construction as K̂ is continuous with supp
(
K̂
)

= [−1, 1]. The fourth

line follows Assumptions 5(2) and 8—mw is the lower bound of the eigenvalues of
∑

twi,t−1w
′
i,t−1,

and the upper bound of the eigenvalues of
∑

twi,t−1w
′
i,t−1 exists due to the compactedness of C.

Combining (52), (53), and (54), the first part of the third term∫
‖z‖2≤M

‖z‖22 |(f − f0) ∗ Kδ (z|c0)| q0 (c0) dzdc0 .M5/2 exp

(
dwσ

2
0

2mwδ2

)
‖g (Di|ϑ0, f)− g (Di|ϑ0, f0)‖1 .
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Third term - second part:∫
‖z‖2>M

‖z‖22 |(f − f0) ∗ Kδ (z|c0)| q0 (c0) dzdc0

≤M−2η

∫
‖z‖2>M

‖z‖2(1+η)
2 |(f − f0) ∗ Kδ (z|c0)| q0 (c0) dzdc0

≤M−2η

∫
‖z‖2(1+η)

2 (f + f0) ∗ Kδ (z|c0) q0 (c0) dzdc0

.M−2η

∫ (
‖z − υ‖2(1+η)

2 + ‖υ‖2(1+η)
2

)
(f + f0) (z − υ|c0)Kδ (υ) q0 (c0) dzdυdc0

=M−2η

(∫
‖λ‖2(1+η)

2 (f + f0) (λ|c0) q0 (c0) dλdc0 +

∫
‖υ‖2(1+η)

2 Kδ (υ) dυ

)
.M−2η.

Note that the 2 (1 + η)-th moment of Kδ exists by construction, the unconditional 2 (1 + η)-th

moment of f0 exists based on Assumption 9(1-e), and the unconditional 2 (1 + η)-th moment of f

exists as we consider space F .

In summary: We have

W2 (f, f0) = W2 (f (h|c0) q0 (c0) , f0 (h|c0) q0 (c0)) (55)

≤
(∫

W 2
2 (f0, f |c0) q0 (c0) dc0

)1/2

.

(
δ2 +M5/2 exp

(
dwσ

2
0

2mwδ2

)
‖g (Di|ϑ0, f)− g (Di|ϑ0, f0)‖1 +M−2η

)1/2

.

Similar to the random coefficients case in Appendix C.3.1, we can choose

M = ‖g (Di|ϑ0, f)− g (Di|ϑ0, f0)‖−v1
1 ,

δ =

√
dwσ2

0

2mw

(
1− 5

2v1 − v1v2

) (− log ‖g (Di|ϑ0, f)− g (Di|ϑ0, f0)‖1)−1/2 ,

for some v1, v2 > 0 and 5
2v1 + v1v2 < 1. Then, last two terms in (55) are dominated by the first

term. Therefore, there exists CW > 0 such that

C (‖g (Di|ϑ0, f)− g (Di|ϑ0, f0)‖1) = CW · (− log ‖g (Di|ϑ0, f)− g (Di|ϑ0, f0)‖1)−1/2 ≥ 0

is an increasing function with limx→0 C (x) = 0 satisfying condition 1-c in Theorem 4.

4. Condition 2 in Theorem 4. Same as the random coefficients homoskedastic case in Appendix

C.3.1.

5. Condition 3 in Theorem 4. Assumption 9(2,3-b,3-c) addresses the sieve property. Now the
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covering number is based on the induced q0-integrated L1-distance. Assumption 9(2) resembles the

random coefficients case in Appendix C.3.1 while expands component means to include coefficients

on ci0. Comparing to Theorem 5.10 in Pati et al. (2013), Assumption 9(2) here imposes weaker tail

conditions on G0 and hence is able to accommodate multivariate-normal-inverse-Wishart compo-

nents. Assumption 9(3-b,c) on the stick breaking process directly follows Remark 5.12 and Lemma

5.15 in Pati et al. (2013).

C.4 Density Forecasts: General Semiparametric Model

Let p (yi,1:T |hi, ϑ, Di\ yi,1:T ) be the individual-specific likelihood of yi,1:T , p (yi,T+1 |hi, ϑ,Di ) be a

component of the density forecast, which captures individual i’s uncertainty due to future shocks

and is a more general version of the first term on the right hand side of (3), and A (hi, ϑ,Di) =

E
[
y2
i,T+1 |hi, ϑ,Di

]
p (yi,1:T |hi, ϑ, Di\ yi,1:T ).

Theorem 21. (Density Forecasts: General Semiparametric Model) Given i, suppose we have:

1. Posterior consistency: conditions in Theorem 4.

2. Distribution of individual heterogeneity: For some Mλ,i,M2,i > 0:

(a) f0 is bounded above by Mλ,i.

(b) 0 < Ef0

[
‖hi‖22

∣∣∣ ci0] ≤M2,i.

(c) If f is a conditional distribution, q0 (ci0) is continuous, and q0 (ci0) > 0 for all ci0 ∈ C.

3. Likelihood and predictive distribution: For some Ml,i,MA,i > 0:

(a) p (yi,1:T |hi, ϑ, Di\ yi,1:T ) is continuous in hi, and 0 < p (yi,1:T |hi, ϑ, Di\ yi,1:T ) ≤Ml,i.

(b) There exists δ′ϑ > 0 such that for all ‖ϑ− ϑ0‖2 < δ′ϑ, A (hi, ϑ,Di) is continuous in hi and

bounded by MA,i.

4. Differences:

For z = l, p, h,A, there exist increasing functions Cz,i (·) : R≥0 7→ R≥0 with limx→0Cz,i (x) = 0

such that:

(a)
∫
|p (yi,1:T |hi, ϑ, Di\ yi,1:T )− p (yi,1:T |hi, ϑ0, Di\ yi,1:T )| dhi ≤ Cl,i (‖ϑ− ϑ0‖2).

(b) ‖p (yi,T+1 |hi, ϑ,Di )− p (yi,T+1 |hi, ϑ0, Di )‖1 ≤ Cp,i (‖ϑ− ϑ0‖2).

(c)
∥∥∥p (yi,T+1 |hi, ϑ,Di )− p

(
yi,T+1

∣∣∣h̃i, ϑ,Di

)∥∥∥
1
≤ Ch,i

(∥∥∥hi − h̃i∥∥∥
2

)
.

(d)
∫
|A (hi, ϑ,Di)− A (hi, ϑ0, Di)| dhi ≤ CA,i (‖ϑ− ϑ0‖2).

All quantities with subscript i can depend on Di. Then, density forecasts converge to the oracle,

i.e. given i, for all ε > 0, as N →∞,

P
(
W2

(
f condi,T+1, f

oracle
i,T+1

)
< ε
∣∣∣D)→ 1,

in probability with respect to the true DGP.

Proof. (Theorem 21)
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According to Theorem 5.11 in Santambrogio (2015), convergence in the W2 metric is equivalent

to weak convergence plus convergence of the second moment. Thus, the posterior consistency

conditions in Theorem 4 implies that for all continuous bounded functions ψ (·), and εψ, ε2 > 0, as

N →∞, if f is an unconditional distribution,

P
(∣∣∣∣∫ ψ (hi) (f (hi)− f (hi)) dhi

∣∣∣∣ < εψ

∣∣∣∣D)→ 1, (56)

P
(∣∣∣∣∫ ‖hi‖22 (f (hi)− f (hi)) dhi

∣∣∣∣ < ε2

∣∣∣∣D)→ 1,

if f is a conditional distribution,

P
(∣∣∣∣∫ ψ (hi, ci0) (f (hi|ci0)− f (hi|ci0)) q0 (ci0) dhidci0

∣∣∣∣ < εψ

∣∣∣∣D)→ 1, (57)

P
(∣∣∣∣∫ (‖hi‖22 + ‖ci0‖22

)
(f (hi|ci0)− f (hi|ci0)) q0 (ci0) dhidci0

∣∣∣∣ < ε2

∣∣∣∣D)→ 1.

All above convergence results are in probability with respect to the true DGP. Also, to prove the

convergence of density forecasts to the oracle in the W2 metric, it is equivalent to prove that given

i, for all continuous bounded functions ψ (·), and εψ, ε2 > 0, as N →∞,

P
(∣∣∣∣∫ ψ (y)

(
f condi,T+1 (y|ϑ, f,Di)− foraclei,T+1 (y|Di)

)
dy

∣∣∣∣ < εψ

∣∣∣∣D)→ 1,

P
(∣∣∣∣∫ y2

(
f condi,T+1 (y|ϑ, f,Di)− foraclei,T+1 (y|Di)

)
dy

∣∣∣∣ < ε2

∣∣∣∣D)→ 1,

in probability with respect to the true DGP. Let ψ̃ (y) be either ψ (y) or y2. Following the definitions

in Sections 2.2 and 3.3,

∣∣∣∣∫ ψ̃ (y)
(
f condi,T+1 (y|ϑ, f,Di)− foraclei,T+1 (y|Di)

)
dy

∣∣∣∣
=

∣∣∣∣∫ ψ̃ (y)

(∫
p (y|hi, ϑ,Di) p (hi |ϑ, f,Di ) dhi −

∫
p (y|hi, ϑ0, Di) p (hi |ϑ0, f0, Di ) dhi

)
dy

∣∣∣∣
=

∣∣∣∣∫ ψ̃ (y)

(∫
p (y|hi, ϑ,Di) p (yi,1:T |hi, ϑ, Di\ yi,1:T ) f (hi|ci0) dhi∫

p (yi,1:T |hi, ϑ, Di\ yi,1:T ) f (hi|ci0) dhi

−
∫
p (y|hi, ϑ0, Di) p (yi,1:T |hi, ϑ0, Di\ yi,1:T ) f0 (hi|ci0) dhi∫

p (yi,1:T |hi, ϑ0, Di\ yi,1:T ) f0 (hi|ci0) dhi

)
dy

∣∣∣∣ . (58)

The last line follows Bayes’ theorem. Here I combine the cases where f could be an unconditional
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distribution or a conditional distribution. In the former case, f (hi|ci0) = f (hi). Let

Ai =

∫
p (yi,1:T |hi, ϑ, Di\ yi,1:T ) f (hi|ci0) dhi,

Bi

(
y; ψ̃

)
= ψ̃ (y) ·

∫
p (y|hi, ϑ,Di) p (yi,1:T |hi, ϑ, Di\ yi,1:T ) f (hi|ci0) dhi,

with Ai0 and Bi0

(
y; ψ̃

)
being the counterparts for the oracle predictor. Then,

∣∣∣∣∫ ψ̃ (y)
(
f condi,T+1 (y|ϑ, f,Di)− foraclei,T+1 (y|Di)

)
dy

∣∣∣∣
=

∣∣∣∣∣∣
∫ Bi

(
y; ψ̃

)
Ai

−
Bi0

(
y; ψ̃

)
Ai0

 dy

∣∣∣∣∣∣
≤

∣∣∣∫ Bi0 (y; ψ̃
)
dy
∣∣∣ · |Ai −Ai0|

Ai0Ai
+

∣∣∣∫ (Bi (y; ψ̃
)
−Bi0

(
y; ψ̃

))
dy
∣∣∣

Ai
,

and it is sufficient to establish the following six statements (Lemmas 22, 23, 24, 25, 27, and 28).

Note that Ai and Ai0 are non-negative by definition, so we get rid of |·| for these terms.

Lemma 22. Suppose conditions 1, 2-a, 2-c, 3-a, and 4-a in Theorem 21 hold, then for all ε > 0, as

N →∞,

P ( |Ai −Ai0| < ε|D)→ 1,

in probability with respect to the true DGP.

Proof. Note that

|Ai −Ai0|

≤
∣∣∣∣∫ p (yi,1:T |hi, ϑ, Di\ yi,1:T ) (f (hi|ci0)− f0 (hi|ci0)) dhi

∣∣∣∣
+

∫
|p (yi,1:T |hi, ϑ, Di\ yi,1:T )− p (yi,1:T |hi, ϑ0, Di\ yi,1:T )| f0 (hi|ci0) dhi.

First term: Theorem 21(3-a) ensures that p (yi,1:T |hi, ϑ, Di\ yi,1:T ) is a continuous bounded function

of hi. If f is an unconditional distribution, let ψ (hi) = p (yi,1:T |hi, ϑ, Di\ yi,1:T ) and εψ = ε/2.

Then, the posterior consistency of f implies (56), which in turn implies the convergence of the

first term. If f is a conditional distribution, let ψ (hi, ci0) = p (yi,1:T |hi, ϑ, Di\ yi,1:T )/ q0 (ci0) and

εψ = ε/2. Given Theorem 21(2-c), ψ (hi, ci0) is a continuous bounded function of (hi, ci0). Again,

the posterior consistency of f implies (57), which in turn implies the convergence of the first term.

A-39



Combining both cases, we prove that as N →∞, the first term

P
(∣∣∣∣∫ p (yi,1:T |hi, ϑ, Di\ yi,1:T ) (f (hi|ci0)− f0 (hi|ci0)) dhi

∣∣∣∣ < ε

2

∣∣∣∣D)→ 1,

in probability with respect to the true DGP.

Second term: ∫
|p (yi,1:T |hi, ϑ, Di\ yi,1:T )− p (yi,1:T |hi, ϑ0, Di\ yi,1:T )| f0 (hi|ci0) dhi (59)

≤Mλ,i

∫
|p (yi,1:T |hi, ϑ, Di\ yi,1:T )− p (yi,1:T |hi, ϑ0, Di\ yi,1:T )| dhi

≤Mλ,iCl,i (‖ϑ− ϑ0‖2) .

The second and third lines follow conditions 2-a and 4-a in Theorem 21, respectively. Since ϑ enjoys

posterior consistency, as N →∞, the second term

P
(∫

|p (yi,1:T |hi, ϑ, Di\ yi,1:T )− p (yi,1:T |hi, ϑ0, Di\ yi,1:T )| f0 (hi|ci0) dhi <
ε

2

∣∣∣∣D)→ 1,

in probability with respect to the true DGP.

Lemma 23. Let ψ̃ (y) = ψ (y). Suppose conditions 1, 2-a, 2-c, 3-a, 4-a, 4-b, and 4-c in Theorem 21

hold, then for all ε > 0, as N →∞,

P
(∣∣∣∣∫ (Bi (y;ψ)−Bi0 (y;ψ)) dy

∣∣∣∣ < ε

∣∣∣∣D)→ 1,

in probability with respect to the true DGP.

Proof. ψ (y) is a continuous bounded function. Suppose |ψ (y)| ≤ Mψ, and Mψ could depend on

the specific ψ. Note that∣∣∣∣∫ (Bi (y;ψ)−Bi0 (y;ψ)) dy

∣∣∣∣
≤
∣∣∣∣∫ ψ (y) p (y|hi, ϑ,Di) p (yi,1:T |hi, ϑ, Di\ yi,1:T ) (f (hi|ci0)− f0 (hi|ci0)) dhidy

∣∣∣∣
+

∫
|ψ (y)| p (y|hi, ϑ,Di) |p (yi,1:T |hi, ϑ, Di\ yi,1:T )− p (yi,1:T |hi, ϑ0, Di\ yi,1:T )| f0 (hi|ci0) dhidy

+

∫
|ψ (y)| |p (y|hi, ϑ,Di)− p (y|hi, ϑ0, Di)| p (yi,1:T |hi, ϑ0, Di\ yi,1:T ) f0 (hi|ci0) dhidy.
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First term: ∣∣∣∣∫ ψ (y) p (y|hi, ϑ,Di) p (yi,1:T |hi, ϑ, Di\ yi,1:T ) (f (hi|ci0)− f0 (hi|ci0)) dhidy

∣∣∣∣
=

∣∣∣∣∫ E [ψ (y) |hi, ϑ,Di ] p (yi,1:T |hi, ϑ, Di\ yi,1:T ) (f (hi|ci0)− f0 (hi|ci0)) dhi

∣∣∣∣ .
E [ψ (y) |hi, ϑ,Di ] is bounded by definition,

E [ψ (y) |hi, ϑ,Di ] =

∫
ψ (y) p (y|hi, ϑ,Di) dy

≤Mψ

∫
p (y|hi, ϑ,Di) dy = Mψ.

Moreover, E [ψ (y) |hi, ϑ,Di ] is continuous in hi based on Theorem 21(4-c): for all ε > 0, there exists

δh = C−1
h,i (ε /Mψ ) > 0 such that for all

∥∥∥hi − h̃i∥∥∥
2
< δh,

∣∣∣E [ψ (y) |hi, ϑ,Di ]− E
[
ψ (y)

∣∣∣h̃i, ϑ,Di

]∣∣∣
≤
∫
|ψ (y)|

∣∣∣p (y|hi, ϑ,Di)− p
(
y| h̃i, ϑ,Di

)∣∣∣ dy
≤Mψ

∫ ∣∣∣p (y|hi, ϑ,Di)− p
(
y| h̃i, ϑ,Di

)∣∣∣ dy
≤MψCh,i

(∥∥∥hi − h̃i∥∥∥
2

)
< ε.

Then, E [ψ (y) |hi, ϑ,Di ] p (yi,1:T |hi, ϑ, Di\ yi,1:T ) is a continuous and bounded function of hi, and

we can proceed as the proof of the first term in Lemma 22.

Second term: The second term can be reduced to (59) in the proof of Lemma 22,∫
|ψ (y)| p (y|hi, ϑ,Di) |p (yi,1:T |hi, ϑ, Di\ yi,1:T )− p (yi,1:T |hi, ϑ0, Di\ yi,1:T )| f0 (hi|ci0) dhidy

≤Mψ

∫ [∫
p (y|hi, ϑ,Di) dy

]
|p (yi,1:T |hi, ϑ, Di\ yi,1:T )− p (yi,1:T |hi, ϑ0, Di\ yi,1:T )| f0 (hi|ci0) dhi

=Mψ

∫
|p (yi,1:T |hi, ϑ, Di\ yi,1:T )− p (yi,1:T |hi, ϑ0, Di\ yi,1:T )| f0 (hi|ci0) dhi.

Third term: Conditions 3-a and 4-b in Theorem 21 bound the third term,∫
|ψ (y)| |p (y|hi, ϑ,Di)− p (y|hi, ϑ0, Di)| p (yi,1:T |hi, ϑ0, Di\ yi,1:T ) f0 (hi|ci0) dhidy

≤MψMl,i

∫ [∫
|p (y|hi, ϑ,Di)− p (y|hi, ϑ0, Di)| dy

]
f0 (hi|ci0) dhi

≤MψMl,iCp,i (‖ϑ− ϑ0‖2) ,
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Together with the posterior consistency of ϑ, as N →∞, the third term

P
(∫

|ψ (y)| |p (y|hi, ϑ,Di)− p (y|hi, ϑ0, Di)| p (yi,1:T |hi, ϑ0, Di\ yi,1:T ) f0 (hi|ci0) dhidy <
ε

3

∣∣∣∣D)→ 1,

in probability with respect to the true DGP.

Lemma 24. Let ψ̃ (y) = y2. Suppose conditions 1, 2-a, 2-c, 3-b, and 4-d in Theorem 21 hold, then

for all ε > 0, as N →∞,

P
(∣∣∣∣∫ (Bi (y; y2

)
−Bi0

(
y; y2

))
dy

∣∣∣∣ < ε

∣∣∣∣D)→ 1,

in probability with respect to the true DGP.

Proof. Note that ∣∣∣∣∫ (Bi (y; y2
)
−Bi0

(
y; y2

))
dy

∣∣∣∣
=

∣∣∣∣∫ y2p (y|hi, ϑ,Di) p (yi,1:T |hi, ϑ, Di\ yi,1:T ) f (hi|ci0) dhidy

−
∫
y2p (y|hi, ϑ0, Di) p (yi,1:T |hi, ϑ0, Di\ yi,1:T ) f0 (hi|ci0) dhidy

∣∣∣∣
=

∣∣∣∣∫ (A (hi, ϑ,Di) f (hi|ci0)− A (hi, ϑ0, Di) f0 (hi|ci0)) dhi

∣∣∣∣
≤
∣∣∣∣∫ A (hi, ϑ,Di) (f (hi|ci0)− f0 (hi|ci0)) dhi

∣∣∣∣
+

∫
|A (hi, ϑ,Di)− A (hi, ϑ0, Di)| f0 (hi|ci0) dhi.

First term: According to Theorem 21(3-b), for ‖ϑ− ϑ0‖2 < δ′ϑ, A (hi, ϑ,Di) is continuous in hi and

bounded by MA,i. Then, we can proceed as the proof of the first term in Lemma 22. Since ϑ enjoys

posterior consistency, as N →∞, the first term

P
(∣∣∣∣∫ A (hi, ϑ,Di) (f (hi|ci0)− f0 (hi|ci0)) dhi

∣∣∣∣ < ε

2

∣∣∣∣D)→ 1,

in probability with respect to the true DGP.

Second term: ∫
|A (hi, ϑ,Di)− A (hi, ϑ0, Di)| f0 (hi|ci0) dhi

≤Mλ,i

∫
|A (hi, ϑ,Di)− A (hi, ϑ0, Di)| dhi.

≤Mλ,iCA,i (‖ϑ− ϑ0‖2) .
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The second and third lines follow conditions 2-a and 4-d in Theorem 21, respectively. Since ϑ enjoys

posterior consistency, as N →∞, the second term

P
(∫

|A (hi, ϑ,Di)− A (hi, ϑ0, Di)| f0 (hi|ci0) dhi <
ε

2

∣∣∣∣D)→ 1,

in probability with respect to the true DGP.

Lemma 25. Suppose conditions 2-b, 2-c, and 3-a in Theorem 21 hold, then there exists Ai > 0 such

that

Ai0 > Ai.

Proof. Let µ0 and V0 be the (conditional) mean and variance of hi based on the true distribution f0.

Theorem 21(2-b) ensures the existence of the (conditional) second moment. Following Chebyshev’s

inequality, let dh be the dimension of hi, we have

Pf0

(√
(hi − µ0)′ V −1

0 (hi − µ0) > k

)
≤ dh
k2
.

Define K =

{
hi :

√
(hi − µ0)′ V −1

0 (hi − µ0) ≤ k
}

. Then,

Ai0 =

∫
p (yi,1:T |hi, ϑ0, Di\ yi,1:T ) f0 (hi|ci0) dhi

≥
∫
hi∈K

p (yi,1:T |hi, ϑ0, Di\ yi,1:T ) f0 (hi|ci0) dhi

≥
(

1− dh
k2

)
min
hi∈K

p (yi,1:T |hi, ϑ0, Di\ yi,1:T )
def
= Ai.

Based on Theorem 21(3-a) and the extreme value theorem, the minimum exists and is positive.

Intuitively, since the domains of hi in p (yi,1:T |hi, ϑ0, Di\ yi,1:T ) and f0 (hi|ci0) overlap, the integral

is bounded below by some positive number.

Remark 26. Moreover, together with Lemma 22, let ε = Ai/2, then as N →∞,

P (Ai > Ai/2|D) ≥ P (Ai0 −Ai/2 > Ai/2|D)→ 1,

in probability with respect to the true DGP.

Lemma 27. Let ψ̃ (y) = ψ (y). Suppose condition 3-a in Theorem 21 holds, then there exists B̄ψ,i > 0,

which could depend on the specific ψ, such that∣∣∣∣∫ Bi0 (y;ψ) dy

∣∣∣∣ < B̄ψ,i.
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Proof. ψ (y) is a continuous bounded function. Suppose |ψ (y)| ≤ Mψ, and Mψ could depend on

the specific ψ. We have∣∣∣∣∫ Bi0 (y;ψ) dy

∣∣∣∣
=

∣∣∣∣∫ ψ (y) p (y|hi, ϑ0, Di) p (yi,1:T |hi, ϑ0, Di\ yi,1:T ) f0 (hi|ci0) dhidy

∣∣∣∣
≤Mψ

∫ [∫
p (y|hi, ϑ0, Di) dy

]
p (yi,1:T |hi, ϑ0, Di\ yi,1:T ) f0 (hi|ci0) dhi

= Mψ

∫
p (yi,1:T |hi, ϑ0, Di\ yi,1:T ) f0 (hi|ci0) dhi

≤MψMl,i

∫
f0 (hi|ci0) dhi

= MψMl,i
def
= B̄ψ,i.

The second to last line follows condition 3-a in Theorem 21.

Lemma 28. Let ψ̃ (y) = y2. Suppose conditions 1 and 3-b in Theorem 21 hold, then there exists

B̄2,i > 0 such that as N →∞,

P
(∫

Bi0
(
y; y2

)
dy < B̄2,i

∣∣∣∣D)→ 1,

in probability with respect to the true DGP.8

Proof. According to Theorem 21(3-b), for ‖ϑ− ϑ0‖2 < δ′ϑ, A (hi, ϑ,Di) is bounded MA,i. Then, we

have ∫
Bi0

(
y; y2

)
dy

=

∫
y2p (y|hi, ϑ0, Di) p (yi,1:T |hi, ϑ0, Di\ yi,1:T ) f0 (hi|ci0) dhidy

=

∫
A (hi, ϑ0, Di) f0 (hi|ci0) dhi

≤MA,i

∫
f0 (hi|ci0) dhi

= MA,i
def
= B̄2,i.

Since ϑ enjoys posterior consistency, as N →∞,

P
(∫

Bi0
(
y; y2

)
dy < B̄2,i

∣∣∣∣D)→ 1,

8As Bi0
(
y; y2

)
is non-negative by definition, we get rid of |·|.
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in probability with respect to the true DGP.

C.5 Density Forecasts: (Correlated) Random Coefficients Model with Cross-sectional

Homoskedasticity

Proof. (Theorem 11)

1. Condition 2 in Theorem 21. In the random coefficient case, conditions 2-a,b in Theorem 21 are

given by Assumption 6(1-b,e). In the correlated random coefficient case, condition 2-a in Theorem

21 is given by Assumption 9(1-b); condition 2-b in Theorem 21 is satisfied because we consider

individuals i with finite Ef0

[
‖λ‖22

∣∣∣ ci0]; for condition 2-c in Theorem 21, the continuity of q0 (ci0)

is assumed in Theorem 11, and q0 (ci0) > 0 follows Assumption 8.

2. Condition 3-a in Theorem 21.

p (yi,1:T |hi, ϑ, Di\ yi,1:T ) =
∏
t

φ
(
yit;β

′xi,t−1 + λ′iwi,t−1, σ
2
)

= Ci
(
β, σ2

)
φ
(
λi;mi (β) ,Σi

(
σ2
))
,

where

mi (β) =

(∑
t

wi,t−1w
′
i,t−1

)−1∑
t

wi,t−1

(
yit − β′xi,t−1

)
, (60)

Σi

(
σ2
)

= σ2

(∑
t

wi,t−1w
′
i,t−1

)−1

,

Ci
(
β, σ2

)
=

1√
(2π)T−dw

∣∣∣∑twi,t−1w′i,t−1

∣∣∣
(
σ2
)−T−dw

2 exp

(
−bi (β)

2σ2

)
,

bi (β) =
∑
t

(
yit − β′xi,t−1

)2
−

(∑
t

wi,t−1

(
yit − β′xi,t−1

))′(∑
t

wi,t−1w
′
i,t−1

)−1(∑
t

wi,t−1

(
yit − β′xi,t−1

))
=
(
yi,1:T − β′xi,0:T−1

)
Mw,i

(
yi,1:T − β′xi,0:T−1

)′
,

Mw,i = Idw − w′i,0:T−1

(
wi,0:T−1w

′
i,0:T−1

)−1
wi,0:T−1.

yi,1:T , xi,0:T−1, and wi,0:T−1 are 1×T , dx×T , and dw×T matrices, respectively. Mw,i is a projection

matrix projecting to the null space of wi,0:T−1. As Ci
(
β, σ2

)
can be cancelled in the numerator and

denominator of (58), we can replace p (yi,1:T |hi, ϑ, Di\ yi,1:T ) by

p (hi |ϑ,Di ) = φ
(
λi;mi (β) ,Σi

(
σ2
))
.
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Given the boundedness and rank condition on wi,t−1, the continuity part of Theorem 21(3-a) is

satisfied. For the boundedness part of Theorem 21(3-a), as σ2 ∈
[
σ2, σ̄2

]
,

0 < φ
(
λi;mi (β) ,Σi

(
σ2
))
≤

√√√√(2πσ2)−dw

∣∣∣∣∣∑
t

wi,t−1w′i,t−1

∣∣∣∣∣ (61)

≤

√√√√(2πσ2)−dw

∣∣∣∣∣∑
t

wi,t−1w′i,t−1

∣∣∣∣∣ def
= Ml,i·

3. Condition 3-b in Theorem 21. After cancelling Ci
(
β, σ2

)
in the numerator and denominator of

(58), we can reduce A (hi, ϑ,Di) to

Ã (hi, ϑ,Di) = E
[
y2
i,T+1 |hi, ϑ,Di

]
φ
(
λi;mi (β) ,Σi

(
σ2
))

=
((
β′xiT + λ′iwiT

)2
+ σ2

)
φ
(
λi;mi (β) ,Σi

(
σ2
))
.

Then, Ã (hi, ϑ,Di) is continuous in hi. For boundedness,

Ã (hi, ϑ,Di) ≤
(

2
(
‖β‖22 ‖xiT ‖

2
2 + ‖λi‖22 ‖wiT ‖

2
2

)
+ σ2

)
φ
(
λi;mi (β) ,Σi

(
σ2
))

=
(

2 ‖β‖22 ‖xiT ‖
2
2 + σ2

)
φ
(
λi;mi (β) ,Σi

(
σ2
))

+ 2 ‖λi‖22 ‖wiT ‖
2
2 φ
(
λi;mi (β) ,Σi

(
σ2
))
.

For ‖ϑ− ϑ0‖2 < δ′ϑ, the first term is bounded by
(

2 (‖β0‖2 + δ′ϑ)2 ‖xiT ‖22 + σ̄2
)
Ml,i. For the second

term, note that maxx x
2 exp

(
−cx2

)
= 1

ce , so we have

‖λi‖22 φ
(
λi;mi (β) ,Σi

(
σ2
))

≤2

e
tr
(
Σi

(
σ2
))/√

(2π)dw |Σi (σ2)|

≤
2tr

((∑
twi,t−1w

′
i,t−1

)−1
)√∣∣∣∑twi,t−1w′i,t−1

∣∣∣
e (2π)dw/2

σ2(1−dw/2)

≤ 2dw
emw

(
Λmax,ww,i

2π

)dw/2
max

(
σ2(1−dw/2), σ̄2(1−dw/2)

)
.

where Λmax,ww,i is the largest eigenvalues of
∑

twi,t−1w
′
i,t−1. Given Assumption 5(2), the eigenvalues

of
∑

twi,t−1w
′
i,t−1 are bounded below by mw > 0, so the whole term is finite. Thus, there exists

δ′ϑ > 0 such that for all ‖ϑ− ϑ0‖2 < δ′ϑ, A (hi, ϑ,Di) is continuous in hi and bounded by some

MA,i > 0.

4. Conditions 4-a,b,c in Theorem 21. These conditions are established via Lemma 31 on L1-distance

between normal distributions. Also, based on condition 3 in Theorem 21, we have σ2
0 ∈

(
σ2, σ̄2

)
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and σ2 ∈
[
σ2, σ̄2

]
. For condition 4-a, similar to the argument on page A-24,∫ ∣∣φ (λi;m (β) ,Σ

(
σ2
))
− φ

(
λi;m (β0) ,Σ

(
σ2

0

))∣∣ dλi (62)

≤

√
dw

(
σ2

σ2
0

− 1− ln
σ2

σ2
0

)
+ σ−2

0 (β − β0)′Mxw,i (β − β0)

≤
√
dw
σ̄2 − σ2

σ2
0σ

2

∣∣σ2 − σ2
0

∣∣+

√
Λmax,xw,i

σ2
0

‖β − β0‖2

≤max

(√
dw
σ̄2 − σ2

σ2
0σ

2
,

√
Λmax,xw,i

σ2
0

)
· ‖ϑ− ϑ0‖2

def
= Cl,i (‖ϑ− ϑ0‖2) ,

where Mxw,i =
∑

t xi,t−1w
′
i,t−1

(∑
twi,t−1w

′
i,t−1

)−1∑
twi,t−1x

′
i,t−1, and Λmax,xw,i is the largest

eigenvalue ofMxw,i. Given Assumption 5(2),
∑

twi,t−1w
′
i,t−1 is non-degenerate, so we have Λmax,xw,i <

∞.

The term in conditions 4-b,c is

p (y|hi, ϑ,Di) = φ
(
y;β′xiT + λ′iwiT , σ

2
)
.

Similarly, using Lemma 31 to bound the L1-distance between normal distributions, condition 4-b is

given by ∫ ∣∣φ (y;β′xiT + λ′iwiT , σ
2
)
− φ

(
y;β′0xiT + λ′iwiT , σ

2
0

)∣∣ dy
≤

√
σ2

σ2
0

− 1− ln
σ2

σ2
0

+ σ−2
0 (β − β0)′ xiTx′iT (β − β0)

≤ σ̄
2 − σ2

σ2
0σ

2

∣∣σ2 − σ2
0

∣∣+
1√
σ2

0

‖β − β0‖2 ‖xiT ‖2

≤max

(
σ̄2 − σ2

σ2
0σ

2
,
‖xiT ‖2√

σ2
0

)
· ‖ϑ− ϑ0‖2

def
= Cp,i (‖ϑ− ϑ0‖2)

and so is condition 4-c∫ ∣∣∣φ (y;β′xiT + λ′iwiT , σ
2
)
− φ

(
y;β′xiT + λ̃′iwiT , σ

2
)∣∣∣ dy

≤
√
σ−2

(
λi − λ̃i

)′
wiTw′iT

(
λi − λ̃i

)
≤
‖wiT ‖2√

σ2
·
∥∥∥λi − λ̃i∥∥∥

2

def
= Ch,i

(∥∥∥λi − λ̃i∥∥∥
2

)
.

5. Condition 4-d in Theorem 21. Again, these conditions are established via Lemma 31 on L1-
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distance between normal distributions, as well as that σ2
0 ∈

(
σ2, σ̄2

)
and σ2 ∈

[
σ2, σ̄2

]
.∫ ∣∣∣Ã (hi, ϑ,Di)− Ã (hi, ϑ0, Di)

∣∣∣ dhi
=

∫ ∣∣∣((β′xiT + λ′iwiT
)2

+ σ2
)
φ
(
λi;mi (β) ,Σi

(
σ2
))
−
((
β′0xiT + λ′iwiT

)2
+ σ2

0

)
φ
(
λi;mi (β0) ,Σi

(
σ2

0

))∣∣∣ dλi
≤
∫ ((

β′xiT + λ′iwiT
)2

+ σ2
) ∣∣φ (λi;mi (β) ,Σi

(
σ2
))
− φ

(
λi;mi (β0) ,Σi

(
σ2

0

))∣∣ dλi
+

∫ ∣∣∣((β′xiT + λ′iwiT
)2

+ σ2
)
−
((
β′0xiT + λ′iwiT

)2
+ σ2

0

)∣∣∣φ (λi;mi (β0) ,Σi

(
σ2

0

))
dλi.

First term:∫ ((
β′xiT + λ′iwiT

)2
+ σ2

) ∣∣φ (λi;mi (β) ,Σi

(
σ2
))
− φ

(
λi;mi (β0) ,Σi

(
σ2

0

))∣∣ dλi
≤
(

2 ‖β‖22 ‖xiT ‖
2
2 + σ2

)∫ ∣∣φ (λi;mi (β) ,Σi

(
σ2
))
− φ

(
λi;mi (β0) ,Σi

(
σ2

0

))∣∣ dλi
+ 2 ‖wiT ‖22

∫
‖λi‖22

∣∣φ (λi;mi (β) ,Σi

(
σ2
))
− φ

(
λi;mi (β0) ,Σi

(
σ2

0

))∣∣ dλi
≤
(

2 (‖β0‖2 + ‖β − β0‖2)2 ‖xiT ‖22 + σ̄2
)
· Cl,i (‖ϑ− ϑ0‖2)

+ 2 ‖wiT ‖22
∫
‖λi‖22

∣∣φ (λi;mi (β) ,Σi

(
σ2
))
− φ

(
λi;mi (β0) ,Σi

(
σ2

0

))∣∣ dλi.
The second inequality follows (62), which builds on Lemma 31 on L1-distance between normal

distributions. Moreover, let Mh = ‖ϑ− ϑ0‖−1/4
2 ,∫

‖λi‖22
∣∣φ (λi;mi (β) ,Σi

(
σ2
))
− φ

(
λi;mi (β0) ,Σi

(
σ2

0

))∣∣ dλi
≤
∫
‖λi‖2≤Mh

‖λi‖22
∣∣φ (λi;mi (β) ,Σi

(
σ2
))
− φ

(
λi;mi (β0) ,Σi

(
σ2

0

))∣∣ dλi
+

∫
‖λi‖2>Mh

‖λi‖22
∣∣φ (λi;mi (β) ,Σi

(
σ2
))
− φ

(
λi;mi (β0) ,Σi

(
σ2

0

))∣∣ dλi.
For the first part,∫

‖λi‖2≤Mh

‖λi‖22
∣∣φ (λi;mi (β) ,Σi

(
σ2
))
− φ

(
λi;mi (β0) ,Σi

(
σ2

0

))∣∣ dλi
≤M2

h

∫ ∣∣φ (λi;mi (β) ,Σi

(
σ2
))
− φ

(
λi;mi (β0) ,Σi

(
σ2

0

))∣∣ dλi
≤M2

hCl,i (‖ϑ− ϑ0‖2)

= max

(√
dw
σ̄2 − σ2

σ2
0σ

2
,

√
Λmax,xw,i

σ2
0

)
· ‖ϑ− ϑ0‖1/22 .
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The second inequality follows (62). For the second part,∫
‖λi‖2>Mh

‖λi‖22
∣∣φ (λi;mi (β) ,Σi

(
σ2
))
− φ

(
λi;mi (β0) ,Σi

(
σ2

0

))∣∣ dλi
≤M−2

h

∫
‖λi‖42

∣∣φ (λi;mi (β) ,Σi

(
σ2
))
− φ

(
λi;mi (β0) ,Σi

(
σ2

0

))∣∣ dλi
≤M−2

h

(∫
‖λi‖42 φ

(
λi;mi (β) ,Σi

(
σ2
))
dλi +

∫
‖λi‖42 φ

(
λi;mi (β0) ,Σi

(
σ2

0

))
dλi

)
≤M−2

h

(
‖mi (β)‖42 + 6 ‖mi (β)‖22 tr

(
Σi

(
σ2
))

+ tr
(
Σi

(
σ2
))2

+ 2tr
(

Σi

(
σ2
)2)

+ ‖mi (β0)‖42 + 6 ‖mi (β0)‖22 tr
(
Σi

(
σ2

0

))
+ tr

(
Σi

(
σ2

0

))2
+ 2tr

(
Σi

(
σ2

0

)2))
≤M−2

h

(
‖mi (β0)‖42 + 6 ‖mi (β0)‖22 tr

(
Σi

(
σ2

0

))
+ tr

(
Σi

(
σ2

0

))2
+ 2tr

(
Σi

(
σ2

0

)2)
+ 8 ‖mi (β0)‖42 + 8 (Λmax,xw2,i)

2 ‖β − β0‖42 + 6tr
(
Σi

(
σ̄2
)) (

2 ‖mi (β0)‖22 + 2Λmax,xw2,i ‖β − β0‖22
)

+tr
(
Σi

(
σ̄2
))2

+ 2tr
(

Σi

(
σ̄2
)2))

= ‖ϑ− ϑ0‖1/22

(
C

(0)
A1,i + C

(2)
A1,i ‖β − β0‖22 + C

(4)
A1,i ‖β − β0‖42

)
,

where Λmax,xw2,i is the largest eigenvalue of
∑

t xi,t−1w
′
i,t−1

(∑
twi,t−1w

′
i,t−1

)−2∑
twi,t−1x

′
i,t−1.

Given Assumption 5(2),
∑

twi,t−1w
′
i,t−1 is non-degenerate, so we have Λmax,xw2,i <∞.

Second term:∣∣∣((β′xiT + λ′iwiT
)2

+ σ2
)
−
((
β′0xiT + λ′iwiT

)2
+ σ2

0

)∣∣∣
≤‖β − β0‖2 ‖xiT ‖2 (‖β − β0‖2 ‖xiT ‖2 + 2 ‖β0‖2 + 2 ‖λi‖2 ‖wiT ‖2) +

∣∣σ2 − σ2
0

∣∣
≤‖β − β0‖2 ‖xiT ‖2

(
‖β − β0‖2 ‖xiT ‖2 + 2 ‖β0‖2 +

(
‖λi‖22 + 1

)
‖wiT ‖2

)
+
∣∣σ2 − σ2

0

∣∣
def
=CA2,i (‖ϑ− ϑ0‖2)

(
‖λi‖22 + 1

)
.

Then, ∫ ∣∣∣((β′xiT + λ′iwiT
)2

+ σ2
)
−
((
β′0xiT + λ′iwiT

)2
+ σ2

0

)∣∣∣φ (λi;mi (β0) ,Σi

(
σ2

0

))
dλi

≤CA2,i (‖ϑ− ϑ0‖2)

(∫
‖λi‖22 φ

(
λi;mi (β0) ,Σi

(
σ2

0

))
dλi +

∫
φ
(
λi;mi (β0) ,Σi

(
σ2

0

))
dλi

)
=CA2,i (‖ϑ− ϑ0‖2) ·

(
‖mi (β0)‖22 + tr

(
Σi

(
σ2

0

))
+ 1
)
.

Therefore, there exists an increasing function CA,i (‖ϑ− ϑ0‖2) ≥ 0 with limx→0CA,i (x) = 0 satisfy-

ing condition 4-d in Theorem 21.
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C.6 Useful Lemmas

Lemma 29. (Properties of KL Divergence)

1. (Convolution) The KL divergence is non-increasing after convolution. If f0, f , and p are

distributions, let g0 (y) =
∫
p (y − x) f0 (x) dx be the convolution of f0 and p, and similarly

g (y) =
∫
p (y − x) f (x) dx, then,

DKL (g0 ‖ g) ≤ DKL (f0 ‖ f) .

2. (Independence) The KL divergence is addictive for independent distributions. If fx,0 and fy,0

are independent distributions with joint distribution f0 (x, y) = fx,0 (x) fy,0 (y), and similarly

f (x, y) = fx (x) fy (y), then,

DKL (f0 ‖ f) = DKL (fx,0fy,0 ‖ fxfy) = DKL (fx,0 ‖ fx) +DKL (fy,0 ‖ fy) .

3. (Invertible Transformation) The KL divergence is invariant under invertible transformation. If

y = h(x), where h is a invertible function,

DKL (fy,0 ‖ fy) = DKL (fx,0 ‖ fx) .

Proof. Property 1 (Convolution): Define ` (x) = x log x, then ` (x) is a concave function. Note that

g0 (y) log
g0 (y)

g (y)
= g (y) `

(
g0 (y)

g (y)

)
(63)

= g (y) `

(∫
p (y − x) f (x)∫
p (y − x) f (x) dx

· f0 (x)

f (x)
dx

)
≤ g (y)

∫
p (y − x) f (x)∫
p (y − x) f (x) dx

· `
(
f0 (x)

f (x)

)
dx

=

∫
p (y − x) f (x) `

(
f0 (x)

f (x)

)
dx

=

∫
p (y − x) f0 (x) log

f0 (x)

f (x)
dx,

where the inequality is given by Jensen’s inequality. Then, further integrating the above expression

A-50



over y, we have

DKL (g0 ‖ g) =

∫
g0 (y) log

g0 (y)

g (y)
dy

≤
∫
p (y − x) f0 (x) log

f0 (x)

f (x)
dxdy

=

∫
f0 (x) log

f0 (x)

f (x)
dx

= DKL (f0 ‖ f) ,

where the inequality follow the above derivation (63).

Properties 2 (Independence) and 3 (Variable Transformation) can be directly derived from the

definition of the KL divergence.

Remark 30. We can extend Property 1 to a more general “convolution” form. Let u = h (x, y),

where h (x, y) is invertible in y for all x, then
∣∣∣∂h(x,y)

∂y

∣∣∣ > 0 for all (x, y).9 Given

g0 (y) =

∫ ∣∣∣∣∂h (x, y)

∂y

∣∣∣∣ p (h (x, y)) f0 (x) dx,

g (y) =

∫ ∣∣∣∣∂h (x, y)

∂y

∣∣∣∣ p (h (x, y)) f (x) dx,

we can obtain DKL (g0 ‖ g) ≤ DKL (f0 ‖ f) in a similar manner.

Lemma 31. (L1-Distance between Normal Distributions) Suppose we have two multivariate normal

distributions φ (x;µ1,Σ1) and φ (x;µ2,Σ2), where x is a dx × 1 vector, then

‖φ (x;µ1,Σ1)− φ (x;µ2,Σ2)‖1 ≤

√
tr
(
Σ−1

2 Σ1

)
+ log

det (Σ2)

det (Σ1)
− dx + (µ2 − µ1)′Σ−1

2 (µ2 − µ1).

Proof. We can first bound the L1-distance by the KL divergence using Pinsker’s inequality

‖φ (x;µ1,Σ1)− φ (x;µ2,Σ2)‖1 ≤
√

2DKL (φ (x;µ1,Σ1) ‖ φ (x;µ2,Σ2)),

and then plug in the formula of the KL divergence between multivariate normals.

Lemma 32. (Tail of Normal Distribution) If x follows a standard normal distribution, x ∼ N (0, 1),

then for x∗ > 0,

P (x > x∗) ≤ φ (x∗)

x∗
.

Proof. See Feller (1968).

9In Property 1 above, h (x, y) = y − x.
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D Algorithms

D.1 Random Coefficients Model

For the random coefficients model, I adopt the Gaussian-mixture DPM prior on f . The posterior

sampling algorithm builds on the blocked Gibbs sampler proposed by Ishwaran and James (2001,

2002). They truncate the number of components by a large K, and prove that as long as K is large

enough, the truncated prior is “virtually indistinguishable” from the original one. Once truncation

is conducted, it is possible to augment the data with latent component probabilities, and the data

augmentation improves numerical convergence and leads to faster code.

To check the robustness regarding the truncation, I also implement the more sophisticated yet

complicated slice-retrospective sampler (Dunson, 2009; Yau et al., 2011; Hastie et al., 2015), which

does not truncate the number of components at a predetermined K. The estimates and forecasts

of the two samplers are almost indistinguishable, so I will only show the results generated from the

simpler truncation sampler.

Suppose the number of components is truncated at K. Then, the component probabilities are

constructed via a truncated stick-breaking process governed by the DP scale parameter α.

pk

∼ ζk
∏
j<k (1− ζj) , where ζk ∼ Beta (1, α) , k < K,

= 1−
∑K−1

j=1 pj , k = K.

Note that due to the truncation approximation, the probability for component K is different from

its infinite mixture counterpart in (5). I denote the above truncated stick-breaking process as

pk ∼ TSB (1, α,K) , where TSB stands for “truncated stick-breaking.” The first two arguments are

from the parameters of the Beta distribution, and the last argument is the truncated number of

components.

Below, the algorithms are stated for cross-sectional heteroskedastic models, while the adjust-

ments for cross-sectional homoskedastic scenarios are discussed in Remark 34(2). For individual het-

erogeneity z = λ, l, let γz,i be individual i’s component affiliation, which can take values {1, · · · ,Kz},
Jz,k be the set of individuals in component k, i.e. Jz,k = {i : γz,i = k}, and nz,k be the number of

individuals in component k, i.e. nz,k = #Jz,k. Then, the (data-augmented) joint posterior for the
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model parameters is given by

p ({αz, {pz,k, µz,k,Ωz,k} , {γz,i, zi}} , β|D)

=
∏
i,t

p (yit |λi, li, β, wi,t−1, xi,t−1 ) ·
∏
z,i

p
(
zi
∣∣µz,γz,i ,Ωz,γz,i

)
p (γz,i |{pz,k})

·
∏
z,k

p (µz,k,Ωz,k) p (pz,k|αz) · p (αz) · p (β) ,

where z = λ, l, k = 1, · · · ,Kz, i = 1, · · ·N , and t = 1, · · · , T . The first block links observations

to model parameters {λi, li} and β. The second block links the individual heterogeneity zi to the

underlying distribution fz. The last block formulates the prior on (β, f).10

The proposed Gibbs sampler cycles over the following blocks of parameters (in order): (1) compo-

nent probabilities, αz, {pz,k}; (2) component parameters, {µz,k,Ωz,k}; (3) component memberships,

{γz,i}; (4) individual effects, {λi, li}; and (5) common parameters, β. A sequence of draws from this

algorithm forms a Markov chain with the sampling distribution converging to the posterior density.

Note that if the individual heterogeneity zi were known, step 5 alone would be sufficient to

recover the common parameters. If the mixture structure of fz were known (i.e. if (pz,k, µz,k,Ωz,k)

for all components were known), only steps 3 to 5 would be needed to first assign individuals to

components and then infer zi based on the specific component that individual i has been assigned

to. In reality, neither zi nor its distribution fz is known, so I incorporate two more steps 1 and 2 to

model the underlying distribution fz.

Algorithm 33. (Random Coefficients with Cross-sectional Heteroskedasticity)11 For each iteration

s = 1, · · · , nsim,

1. Component probabilities: For z = λ, l,

(a) Draw α
(s)
z from a gamma distribution p

(
α

(s)
z

∣∣∣ p(s−1)
z,Kz

)
:

α(s)
z ∼ Ga

(
aαz ,0 +Kz − 1, bαz ,0 − log p

(s−1)
z,Kz

)
.

(b) For k = 1, · · · ,Kz, draw p
(s)
z,k from the truncated stick-breaking process

p
({
p

(s)
z,k

} ∣∣∣α(s)
z ,
{
n

(s−1)
z,k

})
:

p
(s)
z,k ∼ TSB

1 + n
(s−1)
z,k , α(s)

z +

Kz∑
j=k+1

n
(s−1)
z,j ,Kz

 .

10The hyperparameters are chosen in a relatively ignorant sense without inferring much from the data except
aligning the scale with the variance of the data. See Appendix D.3 for the details of the baseline model with random
effects.

11Below, I present the formulas for the key nonparametric Bayesian steps, and leave the details of standard posterior
sampling procedures, such as drawing from a normal-inverse-gamma distribution or a linear regression, to Appendix
D.5.
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2. Component parameters: For z = λ, l, and k = 1, · · · ,Kz, draw
(
µ

(s)
z,k,Ω

(s)
z,k

)
from a multivariate-

normal-inverse-Wishart distribution (or a normal-inverse-gamma distribution if z is a scalar)

p

(
µ

(s)
z,k,Ω

(s)
z,k

∣∣∣∣{z(s−1)
i

}
i∈J(s−1)

z,k

)
.

3. Component memberships: For z = λ, l, amd i = 1, · · ·N , draw γ
(s)
z,i from a multinomial distribu-

tion p
({
γ

(s)
z,i

} ∣∣∣{p(s)
z,k, µ

(s)
z,k,Ω

(s)
z,k

}
, z

(s−1)
i

)
:

γ
(s)
z,i = k, with probability pik ∝ p

(s)
z,kφ

(
z

(s−1)
i ; µ

(s)
z,k,Ω

(s)
z,k

)
,

Kz∑
k=1

pik = 1.

4. Individual-specific parameters:

(a) For i = 1, · · · , N , draw λ
(s)
i from a multivariate normal distribution (or a normal distribu-

tion if λ is a scalar) p
(
λ

(s)
i

∣∣∣µ(s)
λ,γλ,i

,Ω
(s)
λ,γλ,i

,
(
σ2
i

)(s−1)
, β(s−1), Di

)
.

(b) For i = 1, · · · , N , draw l
(s)
i via the random-walk Metropolis-Hastings approach,

p
(
l
(s)
i

∣∣∣µ(s)
l,γl,i

,Ω
(s)
l,γl,i

, λ
(s)
i , β(s−1), Di

)
∝ φ

(
l
(s)
i ; µ

(s)
l,γl,i

,Ω
(s)
l,γl,i

) T∏
t=1

φ
(
yit; λ

(s)′
i wi,t−1 + β(s−1)′xi,t−1, σ

2
(
l
(s)
i

))
,

where σ2 (l) = σ̄2−σ2

1+σ̄2 exp(−l) + σ2. Then, calculate
(
σ2
i

)(s)
based on σ2 (l).

5. Common parameters: Draw β(s) from a linear regression model with a “known” variance,

p
(
β(s)

∣∣∣{λ(s)
i ,
(
σ2
i

)(s)}
, D
)

.

Remark 34. (1) With the above prior specification, all steps enjoy closed-form conditional poste-

rior distributions except step 4-b for σ2
i . Hence, I resort to the random-walk Metropolis-Hastings

algorithm to sample σ2
i . In addition, I also incorporate an adaptive procedure based on Atchadé

and Rosenthal (2005), which adaptively adjusts the random walk step size and keeps acceptance

rates around 30%. Intuitively, when the acceptance rate for the current iteration is too high (low),

the adaptive algorithm increases (decreases) the step size in the next iteration, and thus potentially

raises (lowers) the acceptance rate in the next round. The change in step size decreases with the

number of iterations completed, and the step size converges to the optimal value. See Algorithm 36

for details.

(2) In cross-sectional homoskedastic cases, the algorithm would need the following changes: (a)

in steps 1 to 4, only λi is considered, and (b) in step 5,
(
β(s),

(
σ2
)(s))

are drawn from a linear

regression model with an “unknown” variance, p
(
β(s),

(
σ2
)(s) ∣∣∣{λ(s)

i

}
, D
)

.
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D.2 Correlated Random Coefficients Model

To account for the conditional structure in the correlated random coefficients model, I implement

a multivariate MGLRx prior as specified in Subsection 2.3, which can be viewed as the conditional

counterpart of the Gaussian-mixture prior. The conditioning set ci0 is characterized in Section 2.1

for balanced panels or Appendix B.1 for unbalanced panels.

The major computational difference from the random coefficients model in the previous subsec-

tion is that now the component probabilities become flexible functions of ci0. As suggested in Pati

et al. (2013), I adopt the following priors and auxiliary variables in order to retain conjugacy as

much as possible. First, the covariance function for Gaussian process Vk (c, c̃) is specified as

Vk (c, c̃) = exp
(
−Ak ‖c− c̃‖22

)
,

where Ak = CkBk. Define η = β/3. According to the expressions in Assumption 9(3), we can

let Bη
k follow the standard exponential distribution, i.e. p

(
Bη
k

)
= exp

(
−Bη

k

)
, and also let Ck =

C∗k
−(3η+2)/(γη) (log k)−1/η for large ks, where C∗ is a constant, γ ∈ (0, 1), and η(1 − γ) > dc0 .

This prior structure satisfies Pati et al. (2013) Remark 5.12 that ensures the sieve property in

Theorem 4(3).12 Furthermore, it is helpful to introduce a set of auxiliary stochastic functions

ξk (ci0), k = 1, 2, · · · , such that

ξk (ci0) ∼ N (ζk (ci0) , 1) ,

pk (ci0) = Prob (ξk (ci0) ≥ 0, and ξj (ci0) < 0 for all j < k) .

Note that the probit stick-breaking process defined in (6) can be recovered by marginalizing over

{ξk (ci0)}. Finally, I combine the MGLRx prior with Ishwaran and James (2001, 2002) truncation

approximation to simplify the numerical procedure while still retaining reliable results.

LetN×1 vectors ζk = [ζk (c10) , ζk (c20) , · · · , ζk (cN0)]′ and ξk = [ξk (c10) , ξk (c20) , · · · , ξk (cN0)]′,

as well as anN×N matrix V k = Ṽ (Ak) with the i, j-th element being (V k)ij = exp
(
−Ak ‖ci0 − cj0‖22

)
.

The next algorithm extends Algorithm 33 to the correlated random coefficients scenario. Step 1

for component probabilities has been changed, while the rest of the steps are in line with those in

Algorithm 33.

Algorithm 35. (Correlated Random Coefficients with Cross-sectional Heteroskedasticity)13 For each

iteration s = 1, · · · , nsim,

1. Component probabilities: For z = λ, l,

12In practice, to ensure that Vk (c, c̃) would not decay too fast to an identity matrix as k increases, we can set η to
be very large, and γ to be smaller than but very close to 1. Then, Ck would be close to C∗k

−3 essentially. I choose
C∗ to be 5 in the Monte Carlo simulations and the empirical application, and the results are robust across a range of
C∗, e.g. from 1 to 10.

13See Remark 34(2) for the adaption to cross-sectional homoskedastic models.
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(a) For k = 1, · · · ,Kz − 1, draw A
(s)
z,k via the random-walk Metropolis-Hastings approach,14

p
(
A

(s)
z,k

∣∣∣ ζ(s−1)
z,k , {ci0}

)
∝
(
A

(s)
z,k

)η−1
exp

−
A(s)

z,k

Ck

η · φ(ζ(s−1)
z,k ; 0, Ṽ

(
A

(s)
z,k

))
.

Then, calculate V
(s)
z,k = Ṽ

(
A

(s)
z,k

)
.

(b) For k = 1, · · · ,Kz−1, and i = 1, · · · , N , draw ξ
(s)
z,k (ci0) from a truncated normal distribution

p
(
ξ

(s)
z,k (ci0)

∣∣∣ζ(s−1)
z,k (ci0) , γ

(s−1)
z,i

)
:

ξ
(s)
z,k (ci0)


∝ N

(
ζ

(s−1)
z,k (ci0) , 1

)
1
(
ξ

(s)
z,k (ci0) < 0

)
, if k < γ

(s−1)
z,i ,

∝ N
(
ζ

(s−1)
z,k (ci0) , 1

)
1
(
ξ

(s)
z,k (ci0) ≥ 0

)
, if k = γ

(s−1)
z,i ,

∼ N
(
ζ

(s−1)
z,k (ci0) , 1

)
, if k > γ

(s−1)
z,i .

(c) For k = 1, · · · ,Kz−1, ζ
(s)
z,k, draw from a multivariate normal distribution p

(
ζ

(s)
z,k

∣∣∣V (s)
z,k, ξ

(s)
z,k

)
:

ζ
(s)
z,k ∼ N (mζ,k,Σζ,k) , where Σζ,k =

[(
V

(s)
z,k

)−1
+ IN

]−1

and mζ,k = Σζ,kξ
(s)
z,k.

(d) For k = 1, · · · ,Kz, and i = 1, · · · , N , the component probabilities p
(s)
z,k (ci0) are fully deter-

mined by ζ
(s)
z,k:

p
z(s)
k (ci0) =

Φ
(
ζ

(s)
z,k (ci0)

)∏
j<k

(
1− Φ

(
ζ

(s)
z,j (ci0)

))
, if k < Kz,

1−
∑Kz−1

j=1 p
(s)
z,k (ci0) , if k = Kz.

2. Component parameters: For z = λ, l, and k = 1, · · · ,Kz,

(a) Draw vec
(
µ

(s)
z,k

)
from a multivariate normal distribution p

(
µ

(s)
z,k

∣∣∣∣Ω(s−1)
z,k ,

{
z

(s−1)
i , ci0

}
i∈J(s−1)

z,k

)
.

(b) Draw Ω
(s)
z,k from an inverse Wishart distribution (or an inverse gamma distribution if z is a

scalar) p

(
Ω

(s)
z,k

∣∣∣∣µ(s)
z,k,
{
z

(s−1)
i , ci0

}
i∈J(s−1)

z,k

)
.

3. Component memberships: For z = λ, l, and i = 1, · · ·N , draw γ
(s)
z,i from a multinomial distribu-

tion p
({
γ

(s)
z,i

} ∣∣∣{p(s)
z,k, µ

(s)
z,k,Ω

(s)
z,k

}
, z

(s−1)
i , ci0

)
:

γ
(s)
z,i = k, with probability pik ∝ p

(s)
z,k (ci0)φ

(
z

(s−1)
i ; µ

(s)
z,k

[
1, c′i0

]′
,Ω

(s)
z,k

)
,

Kz∑
k=1

pik = 1.

14The first term comes from the change of variables from Bηk to Ak.
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4. Individual-specific parameters:

(a) For i = 1, · · · , N , draw λ
(s)
i from a multivariate normal distribution (or a normal distribu-

tion if λ is a scalar) p
(
λ

(s)
i

∣∣∣µ(s)
λ,γλ,i

,Ω
(s)
λ,γλ,i

,
(
σ2
i

)(s−1)
, β(s−1), Di

)
.

(b) For i = 1, · · · , N , draw l
(s)
i via the random-walk Metropolis-Hastings approach

p
(
l
(s)
i

∣∣∣µ(s)
l,γl,i

,Ω
(s)
l,γl,i

, λ
(s)
i , β(s−1), Di

)
, then calculate

(
σ2
i

)(s)
based on σ2 (l).

5. Common parameters: Draw β(s) from a linear regression model with a “known” variance,

p
(
β(s)

∣∣∣{λ(s)
i ,
(
σ2
i

)(s)}
, D
)

.

D.3 Hyperparameters

Let us take the baseline model with random effects as an example, and the priors and hyperparam-

eters for more complicated models can be constructed in a similar way. The prior for the common

parameters takes a conjugate norma-inverse-gamma form,

(
β, σ2

)
∼ N

(
mβ,0, ψβ,0σ

2
)

IG
(
aσ2,0, bσ2,0

)
.

The hyperparameters are chosen in a relatively ignorant sense without inferring much from the data

except aligning the scale with the variance of the data.

aσ2,0 = 2, (64)

bσ2,0 = Ê
(
V̂i (yit)

)
·
(
aσ2,0 − 1

)
= Ê

(
V̂i (yit)

)
, (65)

mβ,0 = 0.5, (66)

ψβ,0 =
1

bσ2,0/
(
aσ2,0 − 1

) =
1

Ê
(
V̂i (yit)

) . (67)

In (65) here and (68) below, Êi and V̂i stand for the sample mean and variance for firm i over

t = 1, · · · , T , and Ê and V̂ further take the sample mean and variance over the cross-section

i = 1, · · · , N . Equation (65) ensures that on average the prior and the data have a similar scale.

Equation (66) conjectures that the young firm dynamics are likely to be persistent and stationary.

Since we don’t have strong prior information in the common parameters, their priors are chosen

to be not very restrictive. Equation (64) characterizes a rather fat-tailed prior on σ2 with infinite

variance, and (67) assumes that the prior variance of β is equal to 1 on average.

The hyperpriors for the DPM prior are specified as:

G0

(
µk, ω

2
k

)
= N

(
mλ,0, ψλ,0ω

2
k

)
IG (aλ,0, bλ,0) ,

α ∼ Ga (aα,0, bα,0) .
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Similarly, the hyperparameters are chosen to be:

aλ,0 = 2, bλ,0 = V̂
(
Êi (yit)

)
· (aλ,0 − 1) = V̂

(
Êi (yit)

)
, (68)

mλ,0 = 0, ψλ,0 = 1,

aα,0 = 2, bα,0 = 2. (69)

where bλ,0 is selected to match the scale, while aλ,0, mλ,0, and ψλ,0 yields a relatively ignorant

and diffuse prior. Following Ishwaran and James (2001, 2002), the hyperparameters for the DP

scale parameter α in (69) allow for a flexible component structure with a wide range of component

numbers. The truncated number of components is set to be K = 50, so that the approximation

error is uniformly bounded by Ishwaran and James (2001) Theorem 2:

‖fλ,K − fλ‖1 ∼ 4N exp

(
−K − 1

α

)
≤ 2.10× 10−18,

at the prior mean of α (aα,0/bα,0 = 1) and cross-sectional sample size N = 1000.

I have also examined other choices of hyperparameters, and the results are not very sensitive to

hyperparameters as long as the implied priors are flexible enough to cover the range of observables.

D.4 Random-Walk Metropolis-Hastings

When there is no closed-form conditional posterior distribution in some MCMC steps, it is help-

ful to employ the Metropolis-within-Gibbs sampler and use the random-walk Metropolis-Hastings

(RWMH) algorithm for those steps. The adaptive RWMH algorithm below is based on Atchadé

and Rosenthal (2005), who adaptively adjust the random walk step size in order to keep acceptance

rates around a certain desirable percentage.

Algorithm 36. (Adaptive RWMH) Let us consider a generic variable θ. For each iteration s =

1, · · · , nsim,

1. Draw candidate θ̃ from the random-walk proposal density θ̃ ∼ N
(
θ(s−1), ζ(s)Σ

)
.

2. Calculate the acceptance rate

a.r.(θ̃|θ(s−1)) = min

(
1,

p(θ̃|·)
p(θ(s−1)|·)

)
,

where p(θ|·) is the conditional posterior distribution of interest.

3. Accept the proposal and set θ(s) = θ̃ with probability a.r.(θ̃|θ(s−1)). Otherwise, reject the proposal

and set θ(s) = θ(s−1).

4. Update the random-walk step size for the next iteration,

log ζ(s+1) = ρ
(

log ζ(s) + s−c
(

a.r.(θ̃|θ(s−1))− a.r.?
))

,
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where 0.5 < c ≤ 1, a.r.? is the target acceptance rate, and

ρ (x) = min (|x|, x̄) · sign (x) ,

with x̄ > 0 being a very large number.

Remark 37. (1) In step 1, since the algorithms in this paper only consider the RWMH on condi-

tionally independent scalar variables, Σ is simply taken to be 1.

(2) In step 4, I choose c = 0.55, a.r.? = 30% in the numerical exercises.

D.5 Details on Posterior Samplers

D.5.1 Step 2: Component Parameters

Random Coefficients Model For z = λ, l, and k = 1, · · · ,Kz, draw
(
µ

(s)
z,k,Ω

(s)
z,k

)
from a multivariate-

normal-inverse-Wishart distribution (or a normal-inverse-gamma distribution if z is a scalar)

p

(
µ

(s)
z,k,Ω

(s)
z,k

∣∣∣∣{z(s−1)
i

}
i∈J(s−1)

z,k

)
:

(
µ

(s)
z,k,Ω

(s)
z,k

)
∼ N

(
mz,k, ψz,kΩ

(s)
z,k

)
IW (Ψz,k, νz,k) ,

ψz,k =
(

(ψz,0)−1 + n
(s−1)
z,k

)−1
,

mz,k = ψz,k

(ψz,0)−1mz,0 +
∑

i∈J(s−1)
z,k

z
(s−1)
i

 ,

νz,k = νz,0 + n
(s−1)
z,k ,

Ψz,k = Ψz,0 +
∑

i∈J(s−1)
z,k

(
z

(s−1)
i

)2
+m′z,0 (ψz,0)−1mz,0 −m′z,k (ψz,k)

−1mz,k.

Correlated Random Coefficients Model Due to the complexity arising from the conditional struc-

ture, I break the updating procedure for
(
µ

(s)
z,k,Ω

(s)
z,k

)
into two steps. For z = λ, l, and k = 1, · · · ,Kz,
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(a) Draw vec
(
µ

(s)
z,k

)
from a multivariate normal distribution p

(
µ

(s)
z,k

∣∣∣∣Ω(s−1)
z,k ,

{
z

(s−1)
i , ci0

}
i∈J(s−1)

z,k

)
:

vec
(
µ

(s)
z,k

)
∼ N (vec (mz,k) , ψz,k) ,

m̂zc
z,k =

∑
i∈J(s−1)

z,k

z
(s−1)
i

[
1, c′i0

]
,

m̂cc
z,k =

∑
i∈J(s−1)

z,k

[
1, c′i0

]′ [
1, c′i0

]
,

m̂z,k = m̂zc
z,k

(
m̂cc
z,k

)−1
,

ψz,k =

[
(ψz,0)−1 + m̂cc

z,k ⊗
(

Ω
(s−1)
z,k

)−1
]−1

,

vec (mz,k) = ψz,k

[
(ψz,0)−1 vec (mz,0) +

(
m̂cc
z,k ⊗

(
Ω

(s−1)
z,k

)−1
)

vec (m̂z,k)

]
.

(b) Draw Ω
(s)
z,k from an inverse Wishart distribution (or an inverse gamma distribution if z is a

scalar) p

(
Ω

(s)
z,k

∣∣∣∣µ(s)
z,k,
{
z

(s−1)
i , ci0

}
i∈J(s−1)

z,k

)
:

Ω
(s)
z,k ∼ IW (Ψz,k, νz,k) ,

νz,k = νz,0 + n
(s−1)
z,k ,

Ψz,k = Ψz,0 +
∑

i∈J(s−1)
z,k

(
z

(s−1)
i − µ(s)

z,k

[
1, c′i0

]′)(
z

(s−1)
i − µ(s)

z,k

[
1, c′i0

]′)′
.

D.5.2 Step 4: Individual-specific Parameters

For i = 1, · · · , N , draw λ
(s)
i from a multivariate normal distribution (or a normal distribution if λ

is a scalar) p
(
λ

(s)
i

∣∣∣µ(s)
λ,γλ,i

,Ω
(s)
λ,γλ,i

,
(
σ2
i

)(s−1)
, β(s−1), Di

)
:

λ
(s)
i ∼ N (mλ,i,Σλ,i) ,

Σλ,i =

((
Ω

(s)
λ,γλ,i

)−1
+
((
σ2
i

)(s−1)
)−1

T∑
t=1

wi,t−1w
′
i,t−1

)−1

,

mλ,i = Σλ,i

((
Ω

(s)
λ,γλ,i

)−1
µ̃λ,i +

((
σ2
i

)(s−1)
)−1

T∑
t=1

wi,t−1

(
yit − β(s−1)′xi,t−1

))
,

where the conditional “prior” mean is characterized by

µ̃λ,i =

µ
(s)
λ,γλ,i

, for the random coefficients model,

µ
(s)
λ,γλ,i

[1, c′i0]′ , for the correlated random coefficients model.

A-60



D.5.3 Step 5: Common parameters

Cross-sectional Homoskedasticity Draw
(
β(s),

(
σ2
)(s))

from a linear regression model with an

“unknown” variance, p
(
β(s),

(
σ2
)(s) ∣∣∣{λ(s)

i

}
, D
)

:

(
β(s),

(
σ2
)(s)) ∼ N (mβ, ψβ

(
σ2
)(s))

IG (aσ2 , bσ2) ,

ψβ =

(
(ψβ,0)−1 +

N∑
i=1

T∑
t=1

xi,t−1x
′
i,t−1

)−1

,

mβ = ψβ

(
(ψβ,0)−1mβ,0 +

N∑
i=1

T∑
t=1

xi,t−1

(
yit − λ(s)′

i wi,t−1

))
,

aσ2 = aσ2,0 +
NT

2
,

bσ2 = bσ2,0 +
1

2

(
N∑
i=1

T∑
t=1

(
yit − λ(s)′

i wi,t−1

)2
+m′β,0 (ψβ,0)−1mβ,0 −m′β (ψβ)−1mβ

)
.

Cross-sectional Heteroskedasticity Draw β(s) from a linear regression model with a “known” vari-

ance, p
(
β(s)

∣∣∣{λ(s)
i ,
(
σ2
i

)(s)}
, D
)

:

β(s) ∼ N (mβ,Σβ) ,

Σβ =

(
(Σβ,0)−1 +

((
σ2
i

)(s))−1
N∑
i=1

T∑
t=1

xi,t−1x
′
i,t−1

)−1

,

mβ = Σβ

(
(Σβ,0)−1mβ,0 +

((
σ2
i

)(s))−1
N∑
i=1

T∑
t=1

xi,t−1

(
yit − λ(s)′

i wi,t−1

))
.

Remark 38. For unbalanced panels, the summations and products in steps 4 and 5 (Subsections

D.5.2 and D.5.3) are instead over t ∈ si,1:Ti−1, where si,1:Ti−1 is the observed periods of individual

i used for estimation.

D.6 Parametric Specification of Heteroskedasticity

For Heterosk-Param, we adopt an inverse gamma prior for σ2
i ,

σ2
i ∼ IG (a, b) .
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The conjugate priors for shape parameter a and scale parameter b are based on Llera and Beckmann

(2016) Sections 2.3.1 and 2.3.2:

b ∼ Ga (ab,0, bb,0) ,

p (a|b, aa,0, ba,0, ca,0) ∝ (aa,0)−1−a (b)aca,0

Γ(a)ba,0
. (70)

Following Llera and Beckmann (2016), the hyperparameters are chosen as aa,0 = 1, ba,0 = ca,0 =

ab,0 = bb,0 = 0.01, which specifies relatively uninformative priors for a and b. The corresponding

segment of the posterior sampler is given as follows.

Algorithm 39. (Parametric Specification: Cross-sectional Heteroskedasticity) For each iteration s =

1, · · · , nsim,

1. Shape parameter: Draw a(s) via the random-walk Metropolis-Hastings approach,

p
(
a(s)

∣∣∣b(s−1),
{(
σ2
i

)(s−1)
})

= p
(
a(s)|b(s−1), aa, ba, ca

)
,

which is characterized by the same kernel form as expression (70) with

log(aa) = log(aa,0) +

N∑
i=1

log
((
σ2
i

)(s−1)
)
,

ba = ba,0 +N,

ca = ca,0 +N.

2. Scale parameter: Draw b(s) from a gamma distribution p
(
b(s)

∣∣∣a(s),
{(
σ2
i

)(s−1)
})

:

b(s) ∼ Ga (ab, bb) ,

ab = ab,0 +Na(s),

bb = bb,0 +
N∑
i=1

((
σ2
i

)(s−1)
)−1

.

3. Heteroskedasticity: For i = 1, · · · , N , draw
(
σ2
i

)(s)
from an inverse gamma distribution

p
((
σ2
i

)(s) ∣∣∣a(s), b(s), λ
(s)
i , β(s−1), Di

)
:

(
σ2
i

)(s) ∼ IG (ai, bi) ,

ai = a(s) + T/2,

bi = b(s) +
1

2

T∑
t=1

(
yit − β(s−1)′xi,t−1 − λ(s)′

i wi,t−1

)2
.
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Table 7: Point Forecast Evaluation: Baseline Model with Random Effects

Degenerate Skewed Bimodal

Oracle 0.250 *** 0.289 *** 0.270 ***

Homog 0.039*** 0.092*** 0.340***

Flat 0.099*** 0.004*** 0.021***

Param 0.041*** 0.001*** 0.019***

NP-disc 0.039*** 0.091*** 0.019***

NP-R 0.041*** 0.0001*** 0.003***

Notes: The point forecasts are assessed by the MSE and the Qu et al. (2020) test. For the oracle predictor, the
table reports the exact values of the MSE (averaged over 1,000 Monte Carlo samples). For other predictors, the table
reports their differences from the oracle. The tests compare other feasible predictors with NP-R, with significance
levels indicated by *: 10%, **: 5%, and ***: 1%. The entries in bold indicate the best feasible predictor in each
column.

E Monte Carlo Simulation and Empirical Application

E.1 Point Forecasts

Point Forecast Evaluation. Point forecasts are evaluated via the Mean Square Error (MSE), which

corresponds to the quadratic loss function. Let ŷi,T+1 denote the forecast made by the model,

ŷi,T+1 = β̂′xiT + λ̂′iwiT ,

where λ̂i and β̂ stand for the estimated parameter values. Then, the forecast error is defined as

êi,T+1 = yi,T+1 − ŷi,T+1,

with yi,T+1 being the realized value at time T + 1. The formula for the MSE is provided in the

following equation,

MSE =
1

N

∑
i

ê2
i,T+1.

The Qu et al. (2020) test, which extends the Diebold and Mariano (1995) test to panel data setups,

is further implemented to assess whether the difference in the MSE is significant.

Baseline Model with Random Effects. For each experiment, point forecasts and density forecasts

share comparable rankings (Table 7).

General Model. Considering point forecasts, Heterosk-Param and Heterosk-NP-disc constitute the

first tier, Heterosk-NP-R can be viewed as the second tier, Heterosk-NP-C and Homosk-NP-C are

the third tier, and Homog and Heterosk-Flat are markedly inferior (Table 8). It is not very surprising

that more parsimonious predictors outperform Heterosk-NP-C in terms of point forecasts, though

A-63



Table 8: Point Forecast Evaluation: General Model

Normal vit* Skewed vit
Oracle 0.492*** 0.486***

Homog 0.444*** 0.451***

Homosk NP-C 0.076*** 0.084***

Heterosk Flat 0.580*** 0.596***

Param 0.043*** 0.052***

NP-disc 0.045*** 0.053***

NP-R 0.059*** 0.066***

NP-C 0.079*** 0.082***

Notes: See the description in Table 7 for point forecast evaluation. Here the tests are conducted with respect to
Heterosk-NP-C.

Table 9: Point Forecast Evaluation: Young Firm Dynamics

MSE

Heterosk NP-C/R 0.197 ***

Homog 0.015***

Homosk NP-C 0.005***

Heterosk Flat 0.292***

Param -0.0001***

NP-disc 0.009***

NP-R 0.001***

NP-C -0.002***

Notes: See the description of Table 7 for point forecast evaluation. Here Heterosk-NP-C/R is the benchmark for
both normalization and significance tests. For Heterosk-NP-C/R, the table reports the exact values of the MSE. For
other predictors, the table reports their differences from Heterosk-NP-C/R.

Heterosk-NP-C is correctly specified while the parsimonious ones are not.

Empirical Application. Most predictors are comparable according to the MSE, with only Flat

performing significantly poorly (Table 9). Intuitively, shrinkage in general leads to better forecasting

performance, especially for point forecasts, but the Flat prior does not introduce any shrinkage to

individual effects
(
λi, σ

2
i

)
. Conditional on the common parameter β, the Flat estimator of

(
λi, σ

2
i

)
is a Bayesian analog to individual-specific MLE/OLS that incorporates only firm i’s own history,

which is inadmissible under fixed T (Robbins, 1956; James and Stein, 1961; Efron, 2012).

E.2 Baseline Model with Random Effects

MCMC convergence. Both the Brook-Draper diagnostic and the Raftery-Lewis diagnostic yield

desirable MCMC accuracy. Figures 7 to 10 show trace plots, prior/posterior distributions, rolling

means, and autocorrelations of β, σ2, α, and λi (i = 1).
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Figure 7: Convergence Diagnostics: β

Notes: For each iteration s, rolling mean is calculated over the most recent 1000 draws.
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Figure 8: Convergence Diagnostics: σ2

Notes: For each iteration s, rolling mean is calculated over the most recent 1000 draws.

A-66



Figure 9: Convergence Diagnostics: α

Notes: For each iteration s, rolling mean is calculated over the most recent 1000 draws.
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Figure 10: Convergence Diagnostics: λi (i = 1)

Notes: For each iteration s, rolling mean is calculated over the most recent 1000 draws.
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Figure 11: f0 vs Πf (f |y1:N,0:T ) : Baseline Model with Bimodal Random Effects, N = 105

Param NP-R

Notes: The black solid lines represent the true λi distributions, f0. The teal bands show the posterior distribution of
f , Πf (f |y1:N,0:T ).

Robustness Checks. In terms of the setup, I have run different cross-sectional dimensions N =

100, 500, 1000, 105, different time spans T = 6, 10, 20, 50, different persistences β = 0.2, 0.5, 0.8, 0.95,

different sizes of the i.i.d. shocks σ2 = 1/4 and 1, and different underlying λi distributions (such as

a normal distribution and a fat tail distribution). In general, NP-R is the overall best for density

forecasts except when the true λi comes from a degenerate distribution or a normal distribution.

In the latter case, the parsimonious Param prior coincides with the underlying λi distribution, but

Param is only marginally better than NP-R in terms of both point and density forecasts. Intuitively,

in the language of young firm dynamics, NP-R is preferable when the time series for a specific firm

i is not informative enough to reveal its skill but the whole panel can help recover the skill distribu-

tion and hence firm i’s uncertainty due to heterogenous skill. That is, NP-R works generally better

than the alternatives when N is not too small, T is not too long, σ2 is not too large, and the λi

distribution is relatively non-Gaussian. Furthermore, as the cross-sectional dimension N increases,

the teal bands in Figure 2 get closer to the true f0 and eventually overlap the true f0 (see Figure

11), which resonates the posterior consistency result.

In terms of nonparametric Bayesian priors, I have also constructed the posterior sampler for

more sophisticated priors, such as the Pitman-Yor process which allows a power-law tail for clus-

tering behaviors, as well as a DPM with skew normal components which better accommodates

asymmetric DGPs. They provide minor improvement in the corresponding situations, but call for

extra computational efforts.
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E.3 Empirical Application

E.3.1 Additional Figures and Tables.

Below are additional figures and tables that supplement the main results in the text.

Figure 12: Distributions of Observables

Log Employment R&D

Figure 13: PIT: All Predictors

NP-C/R Homog Homosk Flat

Param NP-disc NP-R NP-C

Notes: Teal lines indicate the confidence interval.
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Figure 14: Predictive Distributions: Firm-level, 4 Types (Regrouped)

Homog NP-C/R

Notes: Predictive distributions are regrouped according to predictors. The blue solid / orange dotted / yellow
dashed / purple dash-dot lines are the predictive distributions of typical firms a/b/c/d in Figure 4 in the main text,
respectively.

Table 10: Two-digit NAICS Codes

Code Sector

11 Agriculture, Forestry, Fishing and Hunting
21 Mining, Quarrying, and Oil and Gas Extraction
22 Utilities
23 Construction
31-33 Manufacturing
42 Wholesale Trade
44-45 Retail Trade
48-49 Transportation and Warehousing
51 Information
52 Finance and Insurance
53 Real Estate and Rental and Leasing
54 Professional, Scientific, and Technical Services
56 Administrative and Support and Waste Management and Remediation Services
61 Educational Services
62 Health Care and Social Assistance
71 Arts, Entertainment, and Recreation
72 Accommodation and Food Services
81 Other Services (except Public Administration)
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Figure 15: Predictive Distributions: Aggregated by Sectors, All Sectors

23 32 33 42

44 45 48 51

52 53 54 56

62 72 81

Notes: Subgraph titles are two-digit NAICS codes. Only sectors with more than 10 firms are shown. The black solid
(teal dotted) lines are the predictive distributions via the NP-C/R (Homog).
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E.3.2 Discussions

Other Setups. (1) Choices of variables: In the main text, yit is chosen to be log employment. I

adopt log employment instead of the employment growth rate, as the latter significantly reduces

the cross-sectional sample size due to the rank requirement. R&Dit is given by the ratio of a firm’s

R&D employment over its total employment considering that R&D employment has more complete

observations compared with other innovation intensity gauges.

I have also explored other measures of firm performance (e.g. log revenue) and innovation activ-

ities (e.g. a binary variable on whether the firm has any R&D expenditure, and a discrete variable

on numbers of intellectual properties–patents, copyrights, or trademarks–owned or licensed by the

firm). The relative rankings of density forecasts are generally robust across measures.

(2) Model specifications: Following the young firm dynamics literature, for the key variables

with potential heterogeneous effects (wi,t−1), I also examined the following two setups beyond the

R&D setup in the main text:

(a) wi,t−1 = 1, which specifies the baseline model with λi being the individual-specific intercept.

(b) wi,t−1 = [1, rect−1]′. rect is an aggregate dummy variable indicating the recent recession. It

is equal to 1 for 2008 and 2009, and is equal to 0 for other periods.15

Results show that for common parameter β, the posterior means are around 0.4 ∼ 0.6 in most

cases. For point forecasts, most of the predictors are comparable according to the MSE, with only

Flat performing poorly in all three setups. For density forecasts, the overall best across all three

setups is Heterosk-NP-C/R in the R&D setup. Comparing across setups, the one with the recession

dummy produces the worst density forecasts (and worst point forecasts as well), so the recession

dummy with heterogeneous effects does not contribute much to forecasting and may even incur

overfitting.

β Estimates in the Literature. Compared to the literature, the closest setup is Zarutskie and Yang

(2015) using traditional panel data methods, where the estimated persistence of log employment is

0.824 and 0.816 without firm fixed effects (their Table 2) which is close to Homog, and 0.228 with

firm fixed effects estimated via OLS (their Table 4) which is close to Flat.

Conditional Independence between λi and σ2
i . First, Figure 16 shows the joint distribution of λ̂i

and σ̂2
i as well as the joint distribution of σ̂2

i and the standardized yi0, the conditioning variable.

There does not seem to be much correlation between λ̂i and σ̂2
i and between σ̂2

i and yi0.

Second, the correlation matrix together with p-values in parentheses (Table 11) delivers a similar

message that the uncondtional correlations between λ̂i and σ̂2
i and between σ̂2

i and yi0 are roughly

insignificant.

15I do not jointly incorporate recession and R&D because this specification largely restricts the cross-sectional
sample size due to the rank requirement.
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Figure 16: Joint Distributions: λ̂i, σ̂
2
i , and yi0

σ̂
2 i

Standardized yi0

σ̂
2 i

λ̂i1

σ̂
2 i

λ̂i2

Notes: λi1 is the heterogeneous intercept, and λi2 is the heterogeneous coefficient on R&D.

Table 11: Unconditional Correlations: λ̂i, σ̂
2
i , and yi0

λ̂i1 λ̂i2 σ̂2
i yi0

λ̂i1 —

λ̂i2 0.33 (0.00) —
σ̂2
i -0.08 (0.06) 0.02 (0.62) —
yi0 0.70 (0.00) 0.10 (0.02) -0.10 (0.02) —

Notes: λi1 is the heterogeneous intercept, and λi2 is the heterogeneous coefficient on R&D. p-values are in parentheses.
The entries in bold are significant at the 5% level.

Third, to assess conditional correlation, I considered a regression

σ̂2
i = b0 + b1λ̂i1 + b2λ̂i2 + b3yi0 + εi,

where the joint significance of (b1, b2) could give us an idea regarding the conditional correlation

between λ̂i and σ̂2
i conditioning on yi0. The estimated b̂1 is −0.02 with the 95% interval being

[−0.09, 0.05], and b̂2 is 0.06 with the 95% interval being [−0.07, 0.18]. Both intervals contain 0. The

p-value of the F -test on (b1, b2) is 0.92, which is not significant either.

Fourth, to examine conditional independence beyond correlation, I conducted various pairwise

conditional independence tests via the R package “bnlearn” (Scutari, 2009). It cannot reject the

null hypothesis that
(
λ̂i1, σ̂

2
i

)∣∣∣ (λ̂i2, yi0),
(
λ̂i2, σ̂

2
i

)∣∣∣ (λ̂i1, yi0),
(
λ̂i1, σ̂

2
i

)∣∣∣ yi0, and
(
λ̂i2, σ̂

2
i

)∣∣∣ yi0 are

pairwise conditional independent (the corresponding p-values are all larger than 0.3). Note that all

exercises here are in a “sanity check” manner, and an asymptotic theory of tests is beyond the scope

of this paper.

Last but not least, I have also explored the alternative predictor with a joint MGLRx prior on

hi = (λ′i, li)
′ mentioned in Appendix B.2. However, the density forecasts significantly deteriorate
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Table 12: Density Forecast Evaluation: Robustness Checks

Empirical Monte Carlo

NP-C/R -195*** -1193***

Cond. Correlated
(
λi, σ

2
i

)
-506*** -1240***

Heterogeneous βi -371*** -1274***

Notes: NP-C/R is the best density predictor in Table 6, which features homogeneous β and conditional
independence between λi and σ2

i . The tests are conducted with respect to NP-C/R, with significance levels indicated
by *: 10%, **: 5%, and ***: 1%. The Monte Carlo part is based on one of the 100 repetitions in the general model
with normal vit.

in both the Monte Carlo simulation and the empirical application (see the first row versus the

second row in Table 12). One possible explanation could be that if the true DGP exhibits condi-

tional independence between λi and σ2
i ,

16 then although in principle the alternative predictor could

approximate the conditional independence structure asymptotically, it could generate overfitting

problems and cause inferior out-of-sample density forecasts in finite samples.

Combining the unconditional and conditional evidence based on posterior means of individual

heterogeneity as well as the robustness check on density forecast performance, one would be partially

confident about the conditional independence assumption in this young firm sample.

Heterogeneous AR(1) Coefficients. Heterogeneous AR(1) coefficients could be interesting in em-

pirical studies (e.g., Arellano et al. (2017) analyzed earnings and consumption dynamics in a non-

linear panel setup). As a robustness check, I have experimented with a version of heterogeneous

persistence βi constructed from the best density predictor, NP-C/R, in the empirical application.

Unfortunately, its density forecast is significantly worse than the forecast from the specification with

homogeneous β (see entries (1,1) versus (3,1) in Table 12).

To investigate why this is the case, I turned to the Monte Carlo simulation where the true

DGP features homogeneous β. If we fit a model with heterogeneous persistence, the range of the

posterior mean β̂i is fairly dispersed, most of β̂is appear to be smaller than the true value (this

usually happens in time series settings where both the persistence and the initial condition are

positive and the sample size is relatively small), and density forecast performance deteriorates in a

similar manner as in the empirical application (see entries (1,2) versus (3,2) in Table 12). Therefore,

one possible explanation could be that in a relatively small sample, heterogeneous βi may tend to

fit noise and thus hamper out-of-sample density forecast performance.

16It is the case in the Monte Carlo simulation and could be the case in the empirical application (see the sanity
checks above).
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