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Abstract

Financial institution networks potentially feature large structural changes over time, which

would a�ect the systemic risk of the whole system. This paper focuses on the Diebold-Yilmaz

connectedness measure obtained via variance decomposition, and provides a fused Lasso method

to estimate structural changes in the VAR coe�cients. To address the high-dimensionality prob-

lem along both cross-sectional and time-series dimensions, the fused Lasso estimator penalizes

the VAR coe�cients as well as their successive di�erences. I prove that under reasonably gen-

eral conditions, the proposed method can consistently detect the unknown number of breaks,

the estimated break dates are su�ciently close to the true dates, and the estimated coe�cients

asymptotically converge to the true values. Monte Carlo simulation evidence is presented, along

with an application to stock return volatilities of the major �nancial institutions traded in the

U.S. stock market. Results show that structural changes in the interaction pattern are more

responsible for the recent �nancial crisis, while the e�ects of unfavorable individual shocks are

negligible.
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1 Introduction

Networks play a vital role in many microeconomic and macroeconomic studies, e.g. peer effects,
technology adoption, input-output structure, financial crises, etc.1 In the general context of these
examples, agents connect to their neighbors and affect each other through the connections, which
generates many interesting features while at the same time complicates the estimation procedure.

Moreover, many networks exhibit large structural changes over time. For example, Diebold and
Yilmaz (2014b) employ a rolling window estimation and demonstrate that the connectedness of the
U.S. financial firm network varies over time and is driven by major macro and financial events. As
shown in Elliott et al. (2013), different network structures would lead to different spillover patterns
and thus affect the stability of the whole system. However, to the best of our knowledge, there has
not been much empirical work rigorously addressing structural changes in networks so far. Aiming
to fill this gap in the literature, this paper attempts to provide an econometric tool to estimate the
structural changes in networks and examine their effect on the systemic risk in the financial sector.2

As our empirical context is the financial institution network, we consider an environment with
both large cross-sectional dimension N and large time-series dimension T . The reason is that
there are many financial institutions in the system, and high frequency financial data can provide
daily realized volatility which would yield more precise estimates for the structural break dates.
Furthermore, from some empirical evidence, financial crises often start with a sudden outburst
(Hatzius et al., 2010; Guo et al., 2011; Diebold and Yilmaz, 2014b); from economic theory, due to
uninsured counter-party risk, a large number of banks would run at the onset of a financial crisis
(Zawadowski, 2013), which would immediately increase the total connectedness. To that end, we
wish to focus on abrupt changes instead of smooth variations in this framework.

We adopt the connectedness measure proposed by Diebold and Yilmaz in a series of papers3 –
a reduced-form approach based on the VAR approximation and the forecast-error variance decom-
position, i.e. the (i, j)-th element in the adjacency matrix denotes the fraction of bank i’s H-step
forecast error variance due to shocks to bank j. This measure particularly accommodates the fi-
nancial institution framework that we are interested in. Please see Section 2.1 for a more detailed
comparison with other network measures as well as a discussion on the choice of identification meth-
ods and forecasting horizon H. Once we estimated the network, it is still hard to eyeball each
bank’s systemicness and vulnerability from either the network graph or the adjacency matrix due
to the large cross-sectional dimension. Hence, we introduce some centrality statistics based on the
Bonacich centrality, a commonly used centrality measure in social network analysis. It characterizes
the relative importance of a node via its direct effect on its immediate neighbors together with its

1There is a growing literature in related studies. For further reference, please see the book of Jackson (2010).
2Ahmed and Xing (2009) in the machine learning literature presents a fused-Lasso flavored technique, named

temporally smoothed L1-regularized logistic regression (TESLA), for recovering the structure of time-varying networks.
However, they only take into account undirected networks with binary observables, and the time-series dimension is
considerably small with T being around only 10 to 20 in their applications.

3For a good summary, please refer to the book of Diebold and Yilmaz (2014a).
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indirect effect on other nodes (Jackson, 2010).
Now our endeavor has been narrowed down to a time-varying VAR estimation with one salient

challenge being the high dimensionality problem. Without structural changes, there are already pN2

parameters in the VAR coefficient matrix to be estimated,4 which could be greater than the number
of the observations, especially when the cross-sectional dimension N is large. The Least Absolute
Shrinkage and Selection Operator (Lasso) is designed to deal with such situations and has proved
to be consistent under the sparsity assumption.5 Considering structural changes, however, the high
dimensionality problem becomes even more severe. Unfortunately, the classical methods for multiple
structural changes, such as the Bai-Perron procedure,6 do not fit the current setting where we have
a large number of regressors in each equation. Therefore, we resort to a variant of Lasso, the fused
Lasso (Tibshirani et al., 2005), which is designed for problems with ordered features and encourages
sparsity of both the coefficients and their successive differences via L1-penalization. There are several
studies, such as Harchaoui and Levy-Leduc (2010), Qian and Su (2013), and Zhang et al. (2013),
trying to extend the fused Lasso to the world of structural breaks. However, the existing literature
in this area limits to the scenario with a scalar dependent variable and a small number of regressors,
so they only penalize the difference in coefficients without penalizing the coefficients themselves,
which would cause some finite-sample difficulties when the cross-sectional dimension N is large.

We take the following steps to tailor the fused Lasso for large-scale VARs. First, we estimate
the system equation by equation to reduce the computational burden. Second, unlike Qian and Su
(2013), we also penalize the coefficients to recover the degree of freedom in each equation. Intuitively,
the consistency argument still applies as long as the penalty terms on the coefficients are much
smaller than the penalty terms on the successive differences in the expression for the Karush-Kuhn-
Tucker optimality condition. Under reasonably general regularity conditions, the proposed method
can consistently detect the unknown number of breaks; the estimated break dates are sufficiently
close to the true dates; and the estimated coefficients asymptotically converge to the true values.
Monte Carlo simulations show that the proposed fused Lasso method works well with a reasonable
computational time for the cases where N is around 102 and T is over 103.

Equipped with all these econometric tools developed for structural changes in financial institution
networks, we present a pilot application to 61 major financial institutions traded in the U.S. stock
market.7 As high volatilities are particularly associated with panics and crises, we devote our
effort to the volatility connectedness with data being constructed as logged daily realized volatility

4Without loss of generality, here we consider a V AR (p) with zero mean.
5The Lasso-type estimator is first motivated by Tibshirani (1996); Knight and Fu (2000) give the first systematic

asymptotic analysis; Yuan and Lin (2006) introduce the group Lasso which selects a group of regressors in or out
of the model together; and Zou (2006) proposes the adaptive Lasso which enjoys the oracle properties. In terms of
static network estimation, a recent paper by Barigozzi and Brownlees (2014) decomposes the estimated network into
a dynamic component and a contemporaneous component and develops a two step Lasso procedure to estimate each
part separately. They also show that their Lasso estimator is consistent for both components under some regularity
conditions.

6Perron (2006) provides a comprehensive survey.
751 commercial banks, 4 investment banks, 2 credit card companies, and 4 insurance companies.
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(RV) spanning from January 2, 2004 to December 31, 2013. It is worth highlighting several major
findings. First, as in the counter-party risk theory (Zawadowski, 2013), the financial institution
network tends to be more strongly connected with higher average degree and centrality during the
crisis, which would significantly increase the systemic risk. Second, we further allow for time-varying
heteroskedasticity of the shocks to assess the relative importance of each channel. Results show that
the recent financial crisis can be attributed mostly to changes in the interaction pattern rather than
the unfavorable individual shocks.

The contribution of this paper is two-fold. Theoretically, the proposed fused Lasso is a useful
econometric tool to detect and estimate structural breaks in large-scale VARs. Empirically, the
application to the financial institution network documents some interesting facts regarding the late-
2000s financial crisis. The rest of the paper is organized as follows. Section 2 introduces the Diebold-
Yilmaz connectedness measure as well as various centrality statistics characterizing the systemicness
and the vulnerability of a network system. Section 3 proposes the fused Lasso algorithm and analyzes
its large sample properties. Section 4 presents the Monte Carlo simulation experiments, and Section
5 applies our method to the 61 major financial institutions and analyzes the empirical findings.
Finally, we conclude and discuss the future research in Section 6.
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2 Network Model

2.1 Connectedness Measure

The connectedness measure is introduced by Diebold and Yilmaz in a series of literature (Diebold
and Yilmaz, 2012; Demirer et al., 2014; Diebold and Yilmaz, 2014a,b),8 which is defined according
to the variance decomposition of a VAR. The idea behind this approach is to assess the link strength
from agent i to agent j as the share of agent j’s forecast error variance attributed to the innovations
in agent i. It provides a non-structural, model-free technique to infer a latent network from observed
panel data.

There are many competing network measures in the literature. For example, Billio et al. (2012)
rely on the pairwise Granger causality, Bonaldi et al. (2013) resort to the VAR coefficient matrix,
and Barigozzi and Brownlees (2014) propose the long run partial correlation network. Compared to
the others, the Diebold and Yilmaz connectedness index enjoys several main advantages, particularly
in the setting of financial institution networks. First, it ensures that all entries in the adjacency
matrix are non-negative, which is required by the definition of a network. Second, it represents a
weighted directed network, which is a desirable feature for the linkage across financial institutions.
Third, even though we implement a sparse VAR estimation, the resulting variance decomposition
matrix is still not sparse, which respects the fact that the financial sector is highly integrated. On
the contrary, the measure based on the VAR coefficient matrix misses the first and the third points,
while the pairwise Granger causality and the long run partial correlation network miss the second
one.

Another branch of literature, such as Aldasoro and Angeloni (2013) and Minoiu and Reyes
(2013), among others, directly utilize the balance sheet and the capital flow information, which is
conceptually different from the Diebold-Yilmaz framework. For instance, the whole system may
be alarmed by a bad shock to bank i, so banks become more reluctant to lend to each other.
Consequently, every bank’s volatility would potentially increase due to lack of risk sharing across
banks, and so would the Diebold-Yilmaz measure from bank i to the others. In contrast, the balance
sheet network would be less connected as a result of less borrowing and lending.

Specifically, the Diebold-Yilmaz connectedness measure is built on an N -variable V AR (p)9

yt =

p∑
l=1

Φlyt−l + εt, εt
iid∼ N (0,Σ) , (1)

which (under the stationarity condition) can be converted to a vector moving average (VMA) rep-
resentation

yt =
∞∑
l=0

Θlεt−l ,

8Please see the original works for background and technical details.
9Without loss of generality, yt is normalized to be mean zero.
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where the coefficient matrices Θl can be deduced recursively as

Θl =

p∑
s=1

ΦrΘl−s ,

with Θ0 being the N ×N identity matrix, and Θl = 0N×N for any l < 0 .
Note that the VAR shocks are not necessarily orthogonal to each other. To perform the vari-

ance decomposition, we first need to pick an identification scheme. Diebold and Yilmaz prefer the
general variance decomposition (GVD) (Koop et al., 1996; Pesaran and Shin, 1998) to the tradi-
tional Cholesky decomposition as the former is invariant to variable ordering.10 Since GVD assumes
normality of the shocks, we take the log transformation of the realized volatility to satisfy such
requirement. The (i, j)-th element of the H-step GVD matrix represents the part of bank i’s H-step
forecast error variance contributed by shocks to bank j, and can be calculated as

G
(H)
ij =

σ−1
jj

∑H−1
h=0 (e′iΘhΣej)

2∑H−1
h=0

(
e′iΘhΣΘ′hei

) ,

where Σ is the covariance matrix of the shocks εt, σjj is the j-th diagonal entry of Σ, which is
incorporated for scale adjustment, and ei is an N × 1 selection vector with unity as its i-th element
and zero elsewhere. However, due to the correlated shocks, the row sums of G(H) are generally not
equal to one. Diebold and Yilmaz further normalize each element in G(H) by its corresponding row
sum. Thus, the network adjacency matrix can be defined as the normalized GVD matrix with the
diagonal elements being set to zeros to eliminate self-loops.

Meanwhile, another decision to make is the choice of the forecasting horizon H. As H increases,
the network will get more and more connected. Especially, when H = 1, (the unnormalized) G(H)

is just the squared contemporaneous correlation among the shocks; and when H → ∞, it becomes
the unconditional variance decomposition. In the subsequent simulation and application, we choose
H = 10 days following the 10-day Value-at-Risk requirement in the Basel Accord.11

In summary, the Diebold-Yilmaz framework focuses on empirical characterization of networks
“seek[ing] connectedness measures that are informed by financial and economic theory and that
help to inform future theory, but that are not wed to a particular theory” (Diebold and Yilmaz,
2014a). This connectedness measure integrates the effects of variable interactions, common factors,
and shock structure, in a forecasting setup. The last one is represented by the covariance matrix Σ.
The first two are captured by the VAR coefficients Φ, but it is hard to distinguish between variable
interactions and common factors in the current reduced-form VAR setting without a structural

10In a robustness check, we implement the Cholesky decomposition based on a moderate number of random
orderings (10,000) and then examine the resulting distribution of the connectedness measure. Its overall time-varying
pattern resembles the GVD result.

11We have also tried to compute the connectedness by varying H between 5 and 15 days, and found that it is not
sensitive to H within this range.
For the simplicity of notation, we drop the superscript (H) from now on.
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model.12

2.2 Centrality Statistics

For networks with large cross-sectional dimension, there would be too much information contained
in the network graph or the adjacency matrix, so we need to summarize it into some statistics to
better evaluate the relative importance of the nodes. The simplest choice is the traditional degree
centrality. In graph theory, the in-degree is defined as the count of arrows coming into an individual
node, i.e. the row sum of the adjacency matrix, while the out-degree as the count of arrows coming
out of an individual node, i.e. the column sum of the adjacency matrix. However, the in-degree and
the out-degree only capture the local direct effect, without considering a node’s interaction with the
whole system.

Bearing this in mind, we introduce some centrality statistics based on the Bonacich centrality,
a widely used centrality measure in social network analysis. It is a generalization of the out-degree,
and characterizes the relative importance of a node via not only its direct effect on its immediate
neighbors but also its indirect effect on other nodes (Jackson, 2010).13 Let bi (η) denote the Bonacich
centrality of node i with η being the discounting factor, then the Bonacich centrality vector b (η) =

[b1 (η) , · · · , bN (η)], which can be expressed as

bi (η) =

N∑
j=1

(
Gji + η

(
G2
)
ji

+ η2
(
G3
)
ji

+ · · ·
)
,

b (η) = ι′NG (IN − ηG)−1 .

where IN is an N×N identity matrix and ιN is an N×1 vector of ones. Intuitively, the centrality of a
node depends on not only how many links it has, but also who it links to. Analogous to Bonaldi et al.
(2013) which is based on a generalized version of the Katz Centrality, we define our systemicness
measure as the Bonacich centrality on G and our vulnerability measure as the Bonacich centrality
on G′ (i.e. the transpose of G). Essentially, the systemicness of bank i captures the total effect on
the whole system as a consequence of an exogenous shock to bank i, and similarly, the vulnerability
of bank i represents the total effect on bank i when there is an exogenous shock to the whole system.

The discounting factor η determines the importance of the indirect effect. In general, the sys-
temicness and the vulnerability increase with η, while being equivalent to the out-degree and the
in-degree when η = 0, respectively. Please see Appendix A.1 for an illustrative example. In the
subsequent simulation and application, we anchor on η = 0.9 for both systemicness and vulnerability
so as to gradually discount the remote links. We can expect that with a smaller η, the systemicness

12For instance, Foerster et al. (2011) utilize a multisector growth model together with the input-output table to
disentangle the sectoral versus the aggregate shocks.

13We have also checked other popular centrality measures, like the eigenvalue centrality and the Katz centrality,
and found fairly similar results.
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and the vulnerability will look more similar to the out-degree and the in-degree, respectively.
To compare and contrast these four statistics, we would bring up several points. First, the

means of the in-degree and the out-degree should be exactly the same. By definition, they are both
equal to the sum of all entries in the adjacency matrix divided by N . Likewise, the means of the
systemicness and vulnerability should also be the same.14 Second, the Diebold-Yilmaz connectedness
index normalizes the in-degree to be less than one but impose no restriction on the out-degree. This
asymmetry would generally cause the row-sum based statistics, such as in-degree and vulnerability,
to be less dispersed than their column-sum based counterparts, i.e. out-degree and systemicness.
Last, from the following simulation and application, we can see a comparable pattern between in-
degree and vulnerability, and between out-degree and systemicness,15 while the systemicness and
vulnerability exhibit more dispersed distribution and larger jump size.

14Of course, their distributions are different in general.
15Indeed, all row-based statistics share similar patterns, including those based on the eigenvalue centrality and the

Katz centrality. A parallel observation can be drawn among column-based statistics.
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3 Fused Lasso

3.1 The Setting

Within the Diebold-Yilmaz framework, structural changes in network can be reduced to a time-
varying VAR. Accordingly, the expression for the standard VAR in equation (1) (in Section 2.1) can
be adapted as

yt =

p∑
l=1

Φ(l,t)yt−l + εt, εt ∼ N (0,Σt) ,

where εt’s are independent across t, and we allow for a time-vary feature on both the coefficient
matrices Φ(l,t)’s and the covariance matrix Σt. Note that the potential time-varying heteroskedas-
ticity in Σt does not interfere with our fused Lasso estimates of the coefficients (see Section 3.3).
In this paper, we mainly focus on the homoskedasticity case with Σt being constant, while make a
preliminary extension to the heteroskedasticity case in the last part of the application, i.e. Section
5.2.2.

As mentioned in the introduction, we are interested in a setting with a large but fixed cross-
sectional dimension N , a large time-series dimension T that can potentially go to infinity,16 abrupt
changes rather than smooth variations, and relatively sparse structural breaks such that the number
of break dates B is much smaller than the total periods T .17 The main goal of this exercise is to
estimate the number of breaks, the break dates, and the coefficient matrices all at once.

The salient challenge here is the super high-dimensional problem. There are potentially pTN2

parameters with only T observations, which would incapacitates standard estimation methods, such
as OLS. What is worse, the classical procedures for multiple structural changes, like Bai-Perron
(BP), are not designed for such context either – even if we implement the BP technique equation
by equation, there are pN regressors in each equation, which would eventually exceed the maximum
number of regressors tabulated in the Bai-Perron critical value table.18

3.2 Fused Lasso

To proceed, we resort to a variant of Lasso, the fused Lasso (Tibshirani et al., 2005). However,
the existing literature has several limitations. First, only the case with a scalar dependent variable
has been considered, though it can be easily extend to a setting with multiple dependent variables.
Second, the usual fused Lasso as in Tibshirani et al. (2005) penalizes the change in coefficients
across regressors instead of across observations. Third, Harchaoui and Levy-Leduc (2010), Qian
and Su (2013), and Zhang et al. (2013) are the closest to this research utilizing the fused Lasso to

16Here we distinguish the asymptotic behaviors between N and T because there is some limitation in our current
consistency argument (see Section 3.3). A more general case where both N, T →∞ is working in progress.

17We will be more rigorous about this assumption in Section 3.3.
18We have also tried BP with N = 6 where the critical value table is still valid. Unfortunately, it performs much

worse than the fused Lasso. The results are available from the author upon request.
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study structural breaks, but they only consider a small number of regressors and thus only need
to penalize the difference in coefficients without the need of penalizing the coefficients themselves.
When a large cross-sectional dimension N is involved, such estimator’s finite-sample performance
would deteriorate sharply.

We propose an extension of Qian and Su (2013) to circumvent these obstacles. First, to prevent
the RAM from overflow, we conduct the estimation equation by equation. Note that consistency can
still be achieved through the equation-by-equation estimation.19 Beyond the computational benefit,
it also promotes the group Lasso consideration as different equations may have different tuning
parameter λ’s, which resonate the empirical observation that some banks may be more vulnerable
than the others.

Second, to ensure enough degree of freedom in each equation, we add the penalty terms on the
coefficients (i.e. λi1

∑T
t=1

∥∥βit∥∥1
in equation (2) below) back to Qian and Su (2013)’s setup. For each

equation i = 1, · · · , N , let
{
τ ib
}Bi
b=1

be the set of break dates and set τ i0 = 0 and τ i
Bi+1

= T , then
for l = 1, · · · , p, for b = 1, · · · , Bi + 1, and for t = τ ib−1 + 1, · · · , τ ib ,

Φ
(l,t)
i· = A

(l,b)
i· ,

where Mi· denotes the i-th row of matrix M , and the set of rows
{
A

(l,b)
i·

}p
i=1

are distinct across

b. Denote xt =
[
y′t−1, · · · , y′t−p

]′, βit =
[
Φ

(1,t)
i· , · · · , Φ

(p,t)
i·

]′
, and αib =

[
A

(1,b)
i· , · · · , A(p,b)

i·

]′
. The

fused Lasso estimator is defined by the following minimization problem:

{
β̃it

}
= arg min

{βit}

{
1

T

T∑
t=1

(
yit − βi′t xt

)2
+ λi1

T∑
t=1

∥∥βit∥∥1
+ λi2

T∑
t=2

∥∥βit − βit−1

∥∥
2

}
, (2)

where ‖x‖1 ≡
∑

i |xi| being the L1-norm and‖x‖2 ≡
√∑

i x
2
i being the L2-norm.

There are several points worth stressing:
(i) The objective function is convex, thus the global minimizer can be efficiently calculated.
(ii) As Yuan and Lin (2006) pointed out, Lasso treats all parameters separately and thus encour-

ages sparsity; Ridge treats all parameters coherently and thus dissuades sparsity; the group Lasso
divides the parameters into groups and thus encourages sparsity at the group level, e.g. in the above
fused Lasso framework, each group is composed of the successive difference of the VAR coefficients
at each period t.

(iii) Nonetheless, estimation inefficiency and selection inconsistency in the original Lasso would
still be a problem, so we can further refine the algorithm with adaptive weights to enhance the perfor-
mance of our fused Lasso estimator (Zou, 2006; Wang and Leng, 2008). Denote βit =

[
βit,1, · · · , βit,Np

]′
,

19The efficiency might be hampered as the actual regressors in each equation might differ (Hsu et al., 2008). We
plan to construct some efficient system Lasso algorithms for large time-varying VARs in a separate project. At least,
we can always implement a post-Lasso Seemingly Unrelated Regression (SUR) based on the estimated break dates
and the selected regressors to alleviate such issue.
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and βt =
[
β1′
t , · · · , βN ′t

]′. Above
{
β̃t

}
can be used to construct the adaptive weights: wi1t,j =

1/
∣∣∣β̃it,j∣∣∣ for each individual coefficient, and w2t = 1/

∥∥∥β̃t − β̃t−1

∥∥∥
2
for the VAR as a whole.20 Then,

the objective function can be written as

{
β̂it

}
= arg min

{βit}

 1

T

T∑
t=1

(
yit − βi′t xt

)2
+ λi1

T∑
t=1

Np∑
j=1

wi1t,j
∣∣βit,j∣∣+ λi2

T∑
t=2

w2t

∥∥βit − βit−1

∥∥
2

 , (3)

and the resulting
{
β̂t

}
are our adaptive fused Lasso estimates. From now on, we denote the fused

Lasso estimates by a tilde and the adaptive ones by a hat.
(iv) In the Bayesian world, the fused Lasso solution can be viewed as the posterior mode of a

Time-Varying Parameter VAR (TVP-VAR) with the coefficients centered around zero and following
a random walk, where λ1 governs the prior dispersion and λ2 controls the step size. We plan to
explore the Bayesian TVP-VAR approach in future research.21 There are many potential directions,
for example, D’Agostino et al. (2011) employ a traditional Gibbs sampling for a small-scale VAR,
while Koop and Korobilis (2013) exploit the forgetting factor method and make it possible to handle
a large-scale VAR.

(v) In Figure 17 in the Appendix, we plot the results with and without the penalty terms on the
coefficients for simulation DGP 5 in Section 4. It can be clearly seen that such penalty terms are
indeed indispensable in the current large-N setting. Without them, the estimated results can still
pick up the breaks, but paths are quite off due to lack of regularization on the coefficients. Thanks
to these additional penalty terms, we are now able to obtain good estimates for both the breaks and
the parameters.

3.3 Asymptotic Properties

The following asymptotic analysis is built on Qian and Su (2013)’s setup. Once again we exam-
ine the system of VAR equation by equation and suppress the index i below when there is no
confusion. Define µmin (M) and µmax (M) as the smallest and the largest eigenvalues of matrix
M . Also define the b-th interval length Ib = τb − τb−1, the b-th jump Jb = αb+1 − αb, the mini-
mum interval length Imin = min1≤b≤B+1 Ib, and the minimum jump size Jmin = min1≤b≤B ‖Jb‖2.
In addition, denote D = diag

(√
I1INp, · · · ,

√
IB+1INp

)
where INp is the Np × Np identity ma-

trix, V = diag
(
σ2
i1, · · · , σ2

iT

)
where σ2

it = Var (εit), X = diag (X1, · · · , XB+1) where Xb =[
xτb−1+1, · · · , xτb

]′, α =
[
α′1, · · · , α′B+1

]′, Ψ = plim 1
T X
′X, and Φ = plim 1

T X
′VX.

20We choose separate weights for the coefficients as there is no particular evidence on coefficient grouping, and
joint weights for the successive changes as it is more relevant to have common break dates in the network. A computer
science paper, Ohlsson et al. (2010), has also imposed adaptive weights on the successive differences to attain better
estimation results, but there might be some theoretical difficulties to obtain its large sample properties (see Qian and
Su (2013)).

21A desirable feature of the Bayesian approach is that it can easily produce credible intervals for the estimates and
the likelihood-ratio statistic for the tuning parameters.
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The choice of λ1’s would be relatively straight-forward since the consistency argument would
still hold as long as λ1’s satisfies Assumption 6 (see Appendix B). Things get more complicated for
λ2’s, which we select via the following information criterion (IC)

IC (λ2) = log
(
σ̌2
)

+ ρT ·#
(

nonzero coefficients in {α̌b}B+1
b=1

)
, (4)

where σ̌2 and {α̌b}B+1
b=1 are obtained by the post-Lasso regression. Paralleling the argument in Qian

and Su (2013), the IC structure above plays an essential role – without it, we can only achieve that
P
(
B̂ ≥ B

)
→ 1 as T →∞, i.e. the number of breaks may be overestimated.

Based on the assumptions in Appendix B, we are able to establish the following propositions
regarding the fused Lasso estimation.

Proposition 1. (Fused Lasso)
Under Assumptions 1-6, as T →∞,
(i) P

(
B̃ = B

)
→ 1;

(ii) P (max1≤b≤B |τ̃b − τb| ≤ TδT )→ 1;
(iii) Post-Lasso estimates D̃ (α̃− α)

d→ N
(
0, Ψ−1ΦΨ−1

)
.

If some uniformity on the DGP is assumed, we could obtain the limiting distribution of the
estimated break dates.

Proposition 2. (Fused Lasso - Limiting Distribution of Estimated Break Dates)
Under Assumptions 1-7, as T → ∞, (∆′bΨb∆b) I

2
0 (τ̃b − τb)

d→ arg maxs Zb (s) for each b =

1, · · · , B + 1, where

Zb (s) =


√

∆′bΦb∆b

∆′bΨb∆b
Wb,1 (|s|)− |s|2 , if s < 0√

∆′bΦb+1∆b

∆′bΨb∆b
Wb,2 (|s|)− ∆′bΨb+1∆b

∆′bΨb∆b

|s|
2 , if s ≥ 0

where Wb,j (s)’s are independent Wiener processes across (b, j).

The sketch proof for the propositions can be found in Appendix B. Intuitively, the asymptotic
argument in Qian and Su (2013) remains valid as long as the penalty terms on the coefficients are
much smaller than the penalty terms on the successive differences in the expression for the Karush-
Kuhn-Tucker optimality condition. In the following simulation and application, we can also see that
the optimal λ1’s are much smaller than the corresponding λ2’s.

There are several caveats in interpreting above asymptotic statements:

(i) Here we obtain the consistency and the asymptotic normality for {α̂b}B+1
b=1 but not for

{
β̂t

}T
t=1

– the fraction of misplaced observations shrinks to zero, but the number of misplaced observations
may goes to infinity at a rate slower than TδT .
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(ii) In the current fused Lasso setup, although we are able to achieve the consistency and obtain
the limiting distribution for the estimates of the break dates and the coefficients ({α̂b}B+1

b=1 ), we
cannot guarantee the consistency in terms of variable selection. The above fused Lasso favors larger
models which may include some irrelevant regressors in addition to the relevant ones. Fortunately,
as the Diebold-Yilmaz connectedness measure is based on forecasting variance decomposition, such
limitation in variable selection would not interfere with our result much.

The adaptive version of the fused Lasso would be one promising way to overcome the variable
selection problem and thus attain the oracle properties (Zou, 2006; Wang and Leng, 2008). Right
now we are working on the asymptotic properties for the adaptive fused Lasso.

3.4 Estimation Procedure

To wrap up, our suggested algorithm can be executed as follows.

Algorithm For each equation i = 1, · · · , N ,

1. The first-stage estimator (fused Lasso):

Let Λi denote the set of candidate
(
λi1, λ

i
2

)
’s. For each

(
λi1, λ

i
2

)
∈ Λi,

(a) Solve the optimization problem in equation (2) to obtain the estimated break dates,
{
τ̃ ib
}B̃i
b=1

,

and the selected (non-zero) regressors in
{
α̃ib
}B̃i+1

b=1
.

(b) Perform the post-Lasso regression based on the estimated break dates and the selected
regressors to obtain the coefficient estimates,

{
α̃ib
}B̃i+1

b=1
, and the average RSS,

(
σ̃i
)2

=
RSS
T .

(c) Calculate the information criterion in equation (4).

Then, select the pair of
(
λ̂i1, λ̂

i
2

)
that minimizes the above IC.

2. Use the corresponding first-stage post-Lasso estimates,
{
β̃t

}T
t=1

, to construct the adaptive

weights for the second stage: wi1t,j = 1/
∣∣∣β̃it,j∣∣∣ and w2t = 1/

∥∥∥β̃t − β̃t−1

∥∥∥
2
.

3. The second-stage estimator (adaptive fused Lasso):

Similar to the first stage except that the optimization problem is replaced by equation (3).

The final estimates are given by the corresponding B̂i,
{
τ̂ ib
}B̂i
b=1

, and post-Lasso estimates,{
α̂ib
}B̂i+1

b=1
.
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4 Simulation

4.1 DGPs

In this experiment, we consider the following 5 environments with the VAR order p = 1, the cross-
sectional dimension N = 100, and the time-series dimension T = 1500 (days). For each DGP, we
simulate nsim = 100 times with the same parameters but different shocks.

• DGP 1: No break at all.

• DGP 2: Sharp breaks with a single crisis:

The crisis regime is t = 201− 350 with higher connectedness.

• DGP 3: Sharp breaks with multiple crises:

There are three crisis regimes, t = 201− 350, 551− 700, and 901− 1050, with higher connect-
edness.

• DGP 4: Smooth variation:

Φt follows a random walk.

• DGP 5: Smooth variation with multiple crises:

Here we combine DGPs 3 and 4. There are three crisis regimes, t = 201 − 350, 551 −
700, and 901 − 1050, with higher connectedness. Beyond the jumps at the break dates, Φt

follows a random walk with the step sizes being much smaller than the sizes of the leaps.

We use DGP 1 to test the severity of false discovery. DGPs 2 and 3 capture a somewhat ideal case
with clean sharp breaks.22 We impose a higher connectedness during the crisis regimes according to
the economic theory in Zawadowski (2013), as well as the empirical findings in Diebold and Yilmaz
(2014b) and our application in Section 5.2.1. As the proposed fused Lasso technique is designed for
abrupt changes, we try the worst scenario in DGP 4 with only smooth variation to see how bad it
can get under complete misspecification. DGP 5 is the most realistic case and thus our benchmark,
where the connectedness changes mildly over time except a few occasional jumps between the crisis
and the non-crisis regimes. Note that the random walk steps are much larger in DGP 4 than in
DGP 5, because in DGP 4, we intend to generate sizable fluctuations solely from the random walk
variation.

For all DGPs, the equation-by-equation signal-to-noise ratios are quite dispersed and most of
them are less than 1 (see Table 4 in the Appendix). The reason is that under the sparsity assumption,

22Note that our approach is an unsupervised learning method treating each sub-interval in a completely separate
manner, so what only matters for estimation is the minimum sub-interval length rather than the percentage of time
in crisis. 150 days would be a sensible choice of crisis length concerning the empirical observations in Hatzius et al.
(2010), Guo et al. (2011), Diebold and Yilmaz (2014b), and our application in Section 5.2.1.
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a large number of equations have only a few non-zero coefficients and even no non-zero coefficients.
These small signal-to-noise ratios would add further difficulties to our estimation.

4.2 Computational Details

As both the RSS and the penalty terms are convex, we can employ some common convex solvers,
e.g. CVX (Grant and Boyd, 2008, 2014),23 to tackle our optimization problem. We construct a
10-by-10 grid on the tuning parameters (λ1, λ2),24 and use ρT = T−1/2 to pick the optimal pair.
This choice of ρT is suggested by Assumption 4 in the theoretical derivation. There is no consent in
the literature which information criterion works the best - Wang et al. (2007) and Zou et al. (2007)
recommend BIC, while Flynn et al. (2013) find AICc superior. To check for robustness, we have
also tried the model selection via AICc and BIC. They produce only a negligible difference from the
current estimates.25 The descriptive statistics for the distribution of the selected (λ1, λ2)’s are given
in Table 5 in the Appendix. We can see that λ1’s are roughly two orders of magnitude smaller than
λ2’s as suggested in our theoretical result, and the chosen (λ1, λ2)’s are comparable across different
DGPs.

To proceed, we compare our method with the rolling window approach (Diebold and Yilmaz,
2012; Demirer et al., 2014; Diebold and Yilmaz, 2014a,b).26 Resembling the choice of tuning pa-
rameters in the fused Lasso, we need to select the window width for the rolling window approach
to control the smoothness of the estimated time paths of the VAR coefficients. As there is no sys-
tematic way to pick the window width, here we take a shortcut – for each DGP, we choose from the
three candidate widths, 100, 150, and 200 by minimizing the root-mean-square error (RMSE) of the

23CVXmay be computationally suboptimal, since it is a general-purpose convex solver without taking full advantage
of the special features of the fused Lasso. We would explore more about it in our future research.

24In the spirit of Qian and Su (2013), for each equation i = 1, · · · , N (the index i has been dropped below), we
first take the reference tuning parameter λm1 such that for any λ1 ≥ λm1 , the resulting β̂t from

min
{βt}

{
1

T

T∑
t=1

(
yt − β′txt

)2
+ λ1

T∑
t=1

‖βt‖2

}

contain only zeros; and similarly, take the reference tuning parameter λm2 such that for any λ2 ≥ λm2 , the resulting β̂t
from

min
{βt}

{
1

T

T∑
t=1

(
yt − β′txt

)2
+ λ2

T∑
t=2

‖βt − βt−1‖2

}
are constant over time. The minimum (λm1 , λ

m
2 ) satisfying the above criteria can be obtained through closely examining

the Karush-Kuhn-Tucker optimality condition (Ohlsson et al., 2010).
Another way to pin down the benchmark tuning parameters is based on the rate-optimal penalty level derived in

Belloni et al. (2011) with a conservative plug-in for the standard deviation of the shocks.
Then, for penalty terms j = 1, 2, we place the 10 ticks between 10−4λmj and λmj spaced equally on a log scale.
25We didn’t attempt to implement the cross-validation approach because in our setting, it is hard to split the data

into training and validation sets as we have network structure on cross-sectional dimension together with structural
changes over time.

26In the simulation and the subsequent application, we adopt a symmetric two-sided window rather than the one-
sided window as in their studies, since the former would eliminate the phase shift and thus make our competitor, the
rolling window approach, more competitive.
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estimated time-varying graph Ĝt (averaged over elements, time, and simulations). The asterisks in
Table 1 indicate the selected rolling window widths. Note that this criterion requires the knowledge
of the true Gt, and thus is infeasible in real data analysis. In each rolling sample, we implement
the equation-by-equation adaptive Lasso estimation to handle the large cross-sectional dimension
N . The tuning parameter λ is picked via BIC.

4.3 Results

In Figures 1 to 5, we show a typical view for each DGP based on the information from one simulation.
The four rows of graphs demonstrate the time paths of the four centrality statistics respectively. The
left panels are derived from the true DGP, while the central panels from the fused Lasso estimates,
and the right panels from the rolling window estimates under the optimal window width. For all
DGPs, the fused Lasso estimates successfully track the time-varying centrality statistics of the true
networks. From DGP 1, false discovery seems not a concern; from DGPs 2, 3, and 5, it clearly
identifies the break dates, but exhibits modest underestimation of the peaks; even for DGP 4 with
only smooth evolution, it can still retain the general shape of the time paths. Besides, by examining
relative positions of the means and the medians in the graphs, we can see that the fused Lasso
provides good approximation to the distributions of the centrality measures. In contrast, although
the simple rolling window approach is able to detect the peaks and troughs in like manner, the
estimated paths are much noisier (except for DGP 4) and miss the exact break dates.

Table 1 presents RMSEs for the estimated coefficients Φ̂t, the implied adjacency matrix Ĝt,
and the four centrality statistics, under different DGPs and different estimation methods (averaged
over elements, time, and simulations). We can clearly see that the fused Lasso yields noticeably
smaller RMSEs than the rolling window method. Within the four statistics, the in-degree and
the vulnerability enjoy relatively smaller errors since the Diebold-Yilmaz connectedness measure
normalized the in-degree, i.e. the row sum of the adjacency matrix, to be less than one.

Table 2 assesses the performance of the fused Lasso in break detection. The first column,
P(Correct Detect), calculates the correct detection rate regarding whether a break exists or not;
and the second column, hd/T, provides the average Hausdorff distance27 between the estimated and
the true sets of break dates normalized by the total number of periods T , conditional on correct
detection of the breaks. Both measures are averaged over equations and simulations. Similar to
what we found in the figures, the fused Lasso does a good job in finding the break dates. It produces
a considerably low false-discovery rate for DGP 1. The estimated break dates are quite close to the
true jumps for DGPs 2, 3 and 5, where the results for DGP 5 are slightly worse due to the small

27The Hausdorff distance is a distance measure between two subsets A and B of a metric space. In the current
situation where both A and B are sets of integers, the Hausdorff distance is defined as

hd (A,B) = max

{
sup
a∈A

inf
b∈B
|a− b| , sup

b∈B
inf
a∈A
|a− b|

}
.
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random-walk evolution. There is no surprise that DGP 4 suffers from a high false-discovery rate –
the random-walk step sizes for DGP 4 are larger than those for DGP 5, which may misguide the
fused Lasso to conceive the long steps as structural changes.
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Figure 1: DGP 1: No break - A Typical View
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Figure 2: DGP 2: Sharp Breaks with a Single Crisis - A Typical View
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* The blue vertical lines indicate the true break dates.
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Figure 3: DGP 3: Sharp Breaks with Multiple Crises - A Typical View
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* The blue vertical lines indicate the true break dates.
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Figure 4: DGP 4: Smooth Variation - A Typical View
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Figure 5: DGP 5: Smooth Variation with Multiple Crises - A Typical View

0 500 1000 1500
0.3

0.4

0.5

0.6

In
−d

eg
re

e 
   

True

 

 

Mean Median

0 500 1000 1500
0.3

0.4

0.5

0.6
Fused Lasso

0 500 1000 1500
0.3

0.4

0.5

0.6
Rolling

0 500 1000 1500
0.1

0.2

0.3

0.4

0.5

O
ut

−d
eg

re
e 

  

0 500 1000 1500
0.1

0.2

0.3

0.4

0.5

0 500 1000 1500
0.1

0.2

0.3

0.4

0.5

0 500 1000 1500

0.2

0.4

0.6

S
ys

te
m

ic
ne

ss
 

0 500 1000 1500

0.2

0.4

0.6

0 500 1000 1500

0.2

0.4

0.6

0 500 1000 1500

0.3

0.4

0.5

0.6

0.7

V
ul

ne
ra

bi
lit

y

0 500 1000 1500

0.3

0.4

0.5

0.6

0.7

0 500 1000 1500

0.3

0.4

0.5

0.6

0.7

* The blue vertical lines indicate the true break dates.
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Table 1: Simulation RMSE

DGP Method Φ̂t Ĝt In. Out. Sys. Vul.

1

Fused Lasso 0.02 0.01 0.01 0.04 0.07 0.03

Rolling
width = 100 0.11 0.04 0.33 0.37 0.69 0.65
width = 150 0.07 0.02 0.27 0.31 0.58 0.52
width = 200* 0.06 0.02 0.19 0.25 0.48 0.39

2

Fused Lasso 0.05 0.02 0.05 0.13 0.35 0.18

Rolling
width = 100 0.12 0.04 0.28 0.37 0.81 0.60
width = 150* 0.10 0.04 0.20 0.29 0.64 0.44
width = 200 0.10 0.04 0.35 0.45 0.94 0.73

3

Fused Lasso 0.07 0.02 0.06 0.16 0.45 0.25

Rolling
width = 100 0.13 0.05 0.29 0.42 0.95 0.67
width = 150* 0.13 0.06 0.20 0.32 0.74 0.48
width = 200 0.14 0.06 0.35 0.49 1.06 0.79

4

Fused Lasso 0.08 0.03 0.09 0.19 0.26 0.14

Rolling
width = 100 0.13 0.04 0.26 0.32 0.50 0.43
width = 150 0.10 0.03 0.21 0.27 0.41 0.35
width = 200* 0.09 0.03 0.16 0.24 0.37 0.28

5

Fused Lasso 0.07 0.03 0.06 0.16 0.45 0.26

Rolling
width = 100 0.13 0.05 0.29 0.40 0.89 0.65
width = 150* 0.13 0.05 0.20 0.30 0.68 0.45
width = 200 0.14 0.06 0.36 0.47 1.01 0.78

* In.: In-degree; Out.: Out-degree; Sys.: Systemicness; Vul.: Vulnerability.
* The asterisks indicate the selected rolling window widths.

Table 2: Break Detection via Fused Lasso
DGP P(Correct Detect) hd/T
1 99.8% -
2 99.3% 0.24%
3 99.5% 0.39%
4 8.5% -
5 92.0% 1.68%

* P(Correct Detect): the correct detection rate regarding whether a break exists or not (averaged over equations
and simulations).
* hd/T: the average Hausdorff distance between the estimated and the true sets of break dates normalized by the
total number of periods T (averaged over equations and simulations).
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5 Application

5.1 Data

In this application, we are particularly interested in the volatility connectedness among financial
institutions, for the reason that volatility is a widely used measure of risk and that a high volatility
provides a good indicator of financial crises. As volatility is not directly observable, we try to infer
it via the realized volatility measure (Andersen et al., 2010). Sheppard et al. (2013) analyze a wide
range of realized measures of asset price variation and find that it is hard to beat the standard
5-minute realized volatility. We obtain the intraday high-frequency data from the Trade and Quote
(TAQ) database,28 and compute the bank-specific daily realized stock return volatility as the sum of
squared intraday returns at a given sampling frequency, e.g. once every 5 minutes. For each trading
day, we only consider the transactions executed between 9:30 am and 4:00 pm, as there would be
much fewer and more irregular transactions beyond this period. This leaves us with 78 intraday
returns each day to construct the daily realized volatility. In addition, as the volatility tends to be
right-skewed, we further perform a log transformation and a standardization on the bank-specific
realized volatility.29 Now, for each financial institution, the resulting data approximate a standard
normal distribution and hence comply with the requirement for GVD (Koop et al., 1996; Pesaran
and Shin, 1998).

Originally, we had in our mind 110 major financial institutions traded in the U.S. stock market.
For each stock, we first filter out the “short days” with transactions recorded for less than 60%
of the trading hours (Sheppard et al., 2013); we then exclude all transactions which are labeled
as unfavorable “Correction Indicator” or irregular “Sale Condition”.30 After all these trimming, we
only keep the financial institutions with valid realized volatility for more than 95% of the trading
days, and then impute the remaining missing data via linear interpolation.31 In the end, we are left
with 61 financial institutions, composed of 51 commercial banks, 4 investment banks, 2 credit card
companies, and 4 insurance companies.32 The panel spans from January 2, 2004 to December 31,
2013 with 2517 days in total. We omit the periods before 2004 as there were fewer banks available
then, and include the most recent data as we also want to examine the aftermath of the late-2000s
financial crisis.

Table 6 in the appendix presents the list of financial institutions in our sample, along with their
business type, market capitalization, and some summary statistics for the standardized log daily

28TAQ is a thorough data source for all intraday transactions of all stocks listed on the NYSE, NYSE-AMEX,
NASDAQ-NMS and NASDAQ-SmallCap.

29Note that shrinkage regressions are in general not scale invariant, so typically, the regressors are standardized
beforehand.

30Please refer to the TAQ User’s Guide for details.
31The remaining missing data would be less than 5% of the total observations. Besides, the imputation procedure

can be further justified by the persistence of high-frequency volatility.
32Unfortunately, there is no mortgage company surviving all the criteria. Especially, the full time series for Fannie

Mae and Freddie Mac are not available from the current database.
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realized volatility. The skewness is positive but small, and the kurtosis is around three, which
confirms our previous argument that the distribution for the resulting data would be close to a
standard normal.

5.2 Discussions

5.2.1 Structural Breaks

The following analysis is accomplished under a VAR(1) approximation, and the residues do not
exhibit much serial correlation.

Figure 6 shows the time paths of the four centrality statistics. First, those from the fused Lasso
follows a neat step pattern with the major break dates in general coinciding with crucial financial
events, which backs the validity of our method. The outburst of the recent crisis is marked on
September 11, 2008, immediately after the US government seized Fannie Mae and Freddie Mac, and
just before Merrill Lynch was purchased by Bank of America, Lehman Brothers filed for bankruptcy
court protection, and AIG accepted the federal bailout. The crisis significantly attenuated after June
5, 2009, which coincides with the NBER ending quarter of the Great recession, and corresponds to
the recovery of the financial sector as ten big banks participating in the Capital Purchase Program
(CPP) have met the requirements for repayment. Second, resonated with the counter-party risk
theory in Zawadowski (2013) and previous empirical findings in Diebold and Yilmaz (2014b), the
network gets more strongly connected with the distributions of degrees and centrality statistics
shifting up altogether during the crisis. Accordingly, there are more banks turning influential and
vulnerable during the crisis, which would aggravate the spread of volatility risk.

5.2.2 Heteroskedasticity

With the estimated time-varying financial institution VAR at hand, we can examine the relative
importance of different components of the variance decomposition measure. As pointed out in Section
2.1, the Diebold-Yilmaz connectedness measure takes into account variable interactions, common
factors, shock sizes, and shock correlation. The first two are captured by the VAR coefficients Φ,33

the third one is represented by diagonal elements of the shock covariance matrix {Σii}, and the last
one is given by the shock correlation matrix

{
ρij = Σij/

√
ΣiiΣjj

}
. Above Section 5.2.1 and Figure 6

are constrained to the homoskedastic case featuring time-varying Φ but fixed Σ. In this subsection,
we attempt to extend our discussion to the heteroskedastic case and assess the effects of shock sizes
and shock correlation on the connectedness measure.

We first draw the estimation residues for each financial institution (with the absolute value taken)
in Figures 18 to 20 - there tends to be more large shocks during the crisis periods, which suggests that
the third component, shock sizes, may also play a role. Considering that the coefficient estimates are

33Unfortunately, it is hard to separately identify them without a structural model.
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consistent, we can also employ the fused Lasso on the outer-product of the VAR residues to capture
potential time-varying heteroskedasticity of the shocks in this preliminary exploration.34 We can
compare the following four heteroskedastic setups to the homoskedastic version (Figure 6):

• varying both Φ and Σ (Figure 7),

• fixing Φ while varying Σ (Figure 8),

• fixing Φ and {ρij} while varying {Σii} (Figure 9),

• and fixing Φ and {Σii} while varying {ρij} (Figure 10).

It can be seen that: First, the shock sizes, i.e. {Σii}, exert almost no effect on the network structural
changes. Second, the shock correlation, i.e. {ρij}, induces an inverse U-shaped evolution path
peaking at the recent crisis for all centrality statistics. Third, the recent financial crisis is mainly
driven by variable interactions (and/or common factors) and shock correlation, i.e. Φ and {ρij}.
Last, the hump from July 2011 to January 2012 in Figure 7 appears to be purely due to the
variation of shock correlation, i.e. {ρij}, which may arise from the intensive Fed policies during
that period, e.g. Operation Twist and bank stress tests. Furthermore, Table 3 tabulates the relative
differences of the estimated graphs with respect to the simplest case with fixed Φ and Σ, and provides
quantitative evidence for above observations that structural changes in the interaction pattern play a
more decisive role in the recent financial crisis, while unfavorable individual shocks exhibit a merely
negligible effect.

5.2.3 Connectedness Graphs

Moreover, we also present the typical graphs for the financial institution connectedness before,
during, and after the crisis in Figures 11 to 13, based on the fused Lasso estimates with both Φ

and Σ varying over time.35 Once again, the links are noticeably stronger during the crisis with AIG
being the most influential “trouble-maker”.36 This makes sense as AIG was a major supplier of the
credit default swaps (CDSs) and a big investor in sub-prime lending.

5.2.4 Policy Implications

Therefore, the estimated model can be used to guide real-time crisis monitoring and facilitate policy-
making. First, an increase in the average degree or centrality of the financial institution connect-
edness would be a good indicator for the start of a financial crises. In addition, the regulators may
wish to pay closer attention to the financial institutions with higher centrality, like AIG, as they are

34An additional constraint is imposed to ensure positive-definiteness of the convariance matrices.
35The connectedness graphs are drawn with the Cytoscape package (Saito et al., 2012).
36Note that acquired or bankrupted financial institutions, such as Lehman Brother, are not in our sample.
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more pivotal for the spread of the crisis,37 and may even impose taxes on the financial institutions
according to their centrality (Acharya et al., 2009) to provide a more compelling incentive for the
financial institutions to maintain a healthier financial structure.

5.2.5 Limitations

Despite all these exciting findings, it is worth mentioning a couple of limitations of our approach in
the empirical context. First, the fused Lasso VAR proposed in this paper calls for a balanced panel,
so we are not able to incorporate the financial institutions acquired or bankrupted during the crisis,
like Bear Stearns and Lehman Brother. Second, as stated in the assumptions in Appendix B, there
are some resolution restrictions on the interval length. If two jumps are too close to each other, it
would be hard to distinguish them and provide reliable estimates.

37On July 8, 2013, The Financial Stability Oversight Council voted to designate AIG as systemically impor-
tant, which “will be subject to consolidated supervision by the Federal Reserve and enhanced prudential standards”.
(http://www.treasury.gov/initiatives/fsoc/designations/Pages/default.aspx)

27

http://www.treasury.gov/initiatives/fsoc/designations/Pages/default.aspx


Figure 6: Application: Fix Σ, Vary Φ
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* The blue vertical lines indicate the estimated major break dates: 9/11/2008 and 6/5/2009, from left to right.
* The gray areas represent the 25-75% of the cross-sectional distributions for the centrality statistics at each period t.

28



Figure 7: Application: Vary Both Φ and Σ
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* The blue vertical lines indicate the estimated major break dates: 9/11/2008 and 6/5/2009, from left to right.
* The gray areas represent the 25-75% of the cross-sectional distributions for the centrality statistics at each period t.
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Figure 8: Application: Fix Φ, Vary Σ
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* The blue vertical lines indicate the estimated major break dates: 9/11/2008 and 6/5/2009, from left to right.
* The gray areas represent the 25-75% of the cross-sectional distributions for the centrality statistics at each period t.

30



Figure 9: Application: Fix Φ and {ρij}, Vary {Σii}
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* The blue vertical lines indicate the estimated major break dates: 9/11/2008 and 6/5/2009, from left to right.
* The gray areas represent the 25-75% of the cross-sectional distributions for the centrality statistics at each period t.
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Figure 10: Application: Fix Φ and {Σii}, Vary {ρij},
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* The blue vertical lines indicate the estimated major break dates: 9/11/2008 and 6/5/2009, from left to right.
* The gray areas represent the 25-75% of the cross-sectional distributions for the centrality statistics at each period t.
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Table 3: Difference w.r.t. “Fixed Φ and Σ”
Fused Lasso Rolling

Ĝt Sys. Vul. Ĝt Sys. Vul.
Vary Both Φ and Σ 0.36 0.29 0.15 0.39 0.31 0.13

Fix Σ, Vary Φ 0.12 0.15 0.14 0.31 0.27 0.08
Fix Φ, Vary Σ 0.21 0.20 0.07 0.24 0.23 0.08

Fix Φ and {ρij}, Vary {Σii} 0.03 0.03 0.01 0.03 0.03 0.00
Fix Φ and {Σii}, Vary {ρij} 0.21 0.21 0.08 0.24 0.23 0.08

* Sys.: Systemicness; Vul.: Vulnerability.
* The relative difference is defined as avg(|A−A0|)

avg(|A0|)
for A = Ĝt, Sys., and Vul. (averaged over elements and time), and

the reference point A0 is from the simplest setup where both Φ and Σ are fixed over time.
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Figure 11: The Connectedness Graph: 9/1/2006 (before the Crisis)
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* Node size shows the market capitalization. Node color indicates the bank business type - orange for a commercial
bank; green for an investment bank; blue for a credit card company; and yellow for an insurance company.
* Link width and grayscale illustrate the strength of the link.
* For clearer display, we only plot the links whose strengths are above the 99th percentile.
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Figure 12: The Connectedness Graph: 9/15/2008 (during the Crisis)
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* Node size shows the market capitalization. Node color indicates the bank business type - orange for a commercial
bank; green for an investment bank; blue for a credit card company; and yellow for an insurance company.
* Link width and grayscale illustrate the strength of the link.
* For clearer display, we only plot the links whose strengths are above the 99th percentile.
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Figure 13: The Connectedness Graph: 10/1/2013 (after the Crisis)
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* Node size shows the market capitalization. Node color indicates the bank business type - orange for a commercial
bank; green for an investment bank; blue for a credit card company; and yellow for an insurance company.
* Link width and grayscale illustrate the strength of the link.
* For clearer display, we only plot the links whose strengths are above the 99th percentile.
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6 Concluding Remarks

This paper proposes a fused Lasso method which performs well in detecting structural changes in
network connectedness. An application to the major financial institutions traded in the U.S. stock
market gives an insightful interpretation regarding the nature of the recent financial crisis. We are
planning to extend the current analysis in the following several dimensions:

First, the model selection steps introduce some discontinuities in the estimator which would
generate huge difficulties for regular inference methods, while ignoring the model selection steps
would lead to over-optimistic inference. To that end, we plan to assess the estimation accuracy and
construct the confidence intervals via either the local quadratic approximation (LQA) as in Fan and
Li (2001) or the Bootstrap aggregating (Bagging) as in Efron (2012).

Second, we would also try a Bayesian version of the fused Lasso where the frequentist estimates
can be viewed as the posterior mode. Park and Casella (2008) propose a fully Bayesian version of the
original Lasso, while some recent works (Kang and Guo, 2009; Kyung et al., 2010; Liu et al., 2010a)
discuss various extensions concerning adaptive Lasso, fused Lasso, and VAR. To determine the
structural changes in networks, our endeavor would be to develop a Bayesian fused Lasso algorithm
in the VAR setting built on above pieces while taking care of the high-dimensionality problem. We
can construct a Gibbs sampler by exploring the hierarchical structure of the model. Accordingly,
the tuning parameters (λ1, λ2) can be selected via the empirical Bayesian method or the hyper-prior
method. Compared to the frequentist method, a desirable feature of the Bayesian estimation is that
it can easily produce credible intervals for the estimates and even the likelihood-ratio statistic for
the tuning parameters (λ1, λ2), which would facilitate tests and inferences.

Third, the current program takes about 10 hours to solve the case where N is around 102 and
T is over 103 on an Intel(R) Core(TM) i7-3770 CPU @ 3.40 GHz with 12.0 GB RAM. We can
imagine that it would be much more burdensome if we push N to the order of magnitude over
103, though it is a favorable situation for some network studies. To deal with this issue, we are
considering exploring faster algorithms exploiting the specific features of the fused Lasso (Liu et al.,
2010b; Yu et al., 2013), switching the programming language from MATLAB to C, and utilizing
high-performance computing clusters.

Fourth, it would be desirable but might be difficult to prove the oracle properties of the adaptive
Lasso and extend the asymptotic argument to the case where N → ∞. We conjecture that satis-
factory results can be achieved if N goes to infinity at a rate slower than T . It is still working in
progress.

Fifth, there are many potential applications for the proposed method, e.g. spatial economics
analysis (Arbia, 2006; Anselin, 2010; de Souza, 2012), input-output structure and propagation of
productivity shocks (Acemoglu et al., 2012; Atalay, 2014), etc. It is also worthwhile to explore these
areas through the lenses of structural changes in networks.

Last, we also plan to check several variations of the Diebold-Yilmaz connectedness framework.
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For example:
(a) We currently perform the shrinkage/selection on the VAR coefficients. Hence, the resulting

variance decomposition matrix is not sparse, which provides a good approximation to the highly
integrated financial system. An alternative setup, which may be useful in another context, would be
imposing some sparsity constraints on the network adjacency matrix, i.e. the variance decomposition
matrix. The main challenge here is that the optimization problem may not be convex anymore, which
aggravates the computational burden and cannot guarantee the global minimum.

(b) We focus on the volatility connectedness as high volatilities are often associated with pan-
ics and crises, but the traditional financial theory is main built on the correlation among returns
instead of volatilities, such as the beta in the capital asset pricing model (CAPM). In this sense,
it is worthwhile to estimate the return connectedness as well and compare it with the volatility
connectedness.38

38The linkage in return connectedness may be feeble due to the low persistence of the returns.
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A Discussion

A.1 Centrality Measures

In this illustration, we consider a simple weighted directed network plotted in Figure 14, with the
following adjacency matrix

G =


0 0 0 0

0.5 0 0 0

0 0 0 1

0.5 1 0 0

 .

Figures 15 and 16 demonstrate how systemicness and vulnerability vary with the discounting factor
η.

Recall that the systemicness of node i measures how an exogenous shock to node i affects the
whole system. With η = 0, we only care about node i’s direct effect on its immediate neighbors,
namely, the out-degree. With 0 < η < 1, we also take into account its indirect effect on other nodes
while discounting remote linkages. A larger η implies less discount, and thus larger systemicness.
For example, although nodes 1 and 2 have same level of out-degree (i.e. direct effect), as long as
η > 0, node 1 turns out to be more systemic than node 2. This can be explained by their relative
positions in the network – in terms of the total effect, node 1 can potentially cast an impact on the
whole system, while node 2 only has a potential impact on nodes 3 and 4. From this point of view,
systemicness provides a more reasonable measure than the traditional out-degree in assessing the
importance of a node. Moreover, node 3 has zero systemicness, as it affects no one else; and the
systemicness statistics of both node 3 and node 4 do not change over η, as these two nodes have no
further impact beyond their direct effect.

Similar argument holds for vulnerability. In-degree is a special case of vulnerability with η = 0;
and a larger η would result in a larger vulnerability measure. Note that for a small η, node 4 is
more vulnerable than node 3; situation reverses for a large η. This is once again due to their relative
position in the network – in terms of the direct effect, node 4 is directly exposed to both nodes 1 and
2, while node 3 directly exposed to node 4 only; in terms of the total effect, node 3 can potentially
be affected by everyone else in the system, while node 4 only by nodes 1 and 2.
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Figure 14: A Simple Weighted Directed Network

Figure 15: Systemicness
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Figure 16: Vulnerability

0 0.5 1
0

1

2

3

η

Node 1

0 0.5 1
0

1

2

3

η

Node 2

0 0.5 1
0

1

2

3

η

Node 3

0 0.5 1
0

1

2

3

η

Node 4

46



B Assumptions and Proofs

Assumption 1. (DGP)
(i) (xt, εit) follows a strong mixing process with the mixing coefficient α (τ) ≤ cαρ

τ for some
cα > 0 and ρ ∈ (0, 1). E (xtεit) = 0 for each t.

(ii) Either one of the following two conditions holds:
- (a) supt≥1E ‖xt‖

4q
2 <∞ and supt≥1E ‖εit‖

4q
2 <∞ for some q > 2;

- (b) supt≥1E
[
exp

(
Cxx ‖xt‖2γ2

)]
≤ Cxx < ∞ and supt≥1E [exp (Cxε ‖xtεit‖

γ
2)] ≤ Cxε < ∞ for

some constants Cxx and Cxε, and some γ ∈ (0, ∞].

The assumption on DGP is quite general, which includes ARMA, ARCH, etc. and allows for
both lagged dependent variables in xt and heteroskedasticity in εit. Under Assumption 1 (ii.b), it is
possible to estimate the break dates at an almost optimal convergence rate (T−1) up to a log factor.

Assumption 2. (δT )
(i) The positive sequence {δT } satisfies

√
TδT → 0 as T →∞.

(ii) - (a) If Assumption 1 (ii.a) holds, we need TδT ≥ cvT 1/q for some cv > 0.
- (b) If Assumption 1 (ii.b) holds, we need TδT ≥ cv (log T )(2+γ)/γ for some cv > 0.
(iii) There exist two positive constants cxx and cxx such that

cxx ≤ inf
1≤s<r≤T+1, r−s≥TδT

µmin

(
1

r − s

r−1∑
t=s

E
(
xtx
′
t

))

≤ sup
1≤s<r≤T+1, r−s≥TδT

µmax

(
1

r − s

r−1∑
t=s

E
(
xtx
′
t

))
≤ cxx .

δT governs the speed at which the estimated break dates converge to the true dates. Assumption
2 (iii) is a weaker version of stationarity. As we have lagged dependent variables in xt together with
structural changes, the usual stationarity assumption cannot be satisfied.

Assumption 3. (Interval Length and Jump Size)
(i) Imin = O (T ).
(ii) Jmin → J∗ ≥ 0 and J2

min/max
{

(log T )cδ / (TδT ) , T−1/2
}
→ ∞ as T → ∞ where cδ = 6 if

Assumption 1 (ii.a) holds, and cδ = 1 if Assumption 1 (ii.b) holds.
(iii) λ2/ (JminδT )→ 0 as T →∞.

Intuitively, we want Imin and Jmin to be large enough for easier identification of the jumps and
better estimation of the parameters; and we also want λ2 to be small enough, so it would not
introduce too much bias.

Assumption 4. (Information Criterion)(
1 + J−2

min

)
ρT → 0 and δ−1

T ρT →∞ as T →∞.
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The existence of such ρT is guaranteed by Assumptions 2 (i) and 3 (ii).

Assumption 5. (Breaks)
The true number of breaks is bounded by a finite number Bmax.

This assumption follows the classical structural break literature, such as Bai and Perron (1998,
2003a,b, 2006).

Assumption 6. (λ1)
Tλ1/λ2 → 0 as T →∞.

Intuitively, when λ1 is much smaller than λ2, the penalty terms on the coefficients are much
smaller than the penalty terms on the successive differences in the expression for the Karush-Kuhn-
Tucker optimality condition, which in turn ensures the asymptotic argument in Qian and Su (2013).

Assumption 7. (Uniformity)
(i) Jb = J0∆b, where
- ∆b is independent of T ,
- and the positive scalar J0 satisfies J0 → 0 and T

1
2
−ϑJ0 →∞ as T →∞, for some ϑ ∈ (0, 1/2).

(ii) For b = 1, · · · , B+1, as T →∞, I−1
b

∑τb−1+bsIbc
t=τb−1+1 E (xtx

′
t)→ sΨb and I−1

b

∑τb−1+bsIbc
t=τb−1+1 σ2

itE (xtx
′
t)→

sΦb uniformly in s, where Ψb and Φb are the b-th diagonal matrices of Ψ and Φ, respectively.

Proof. (Propositions 1 and 2 - Fused Lasso)
(i) Reparametrize the objective function (equation 2):
Let

zt
(NTp×1)

=

x′t, · · · , x′t︸ ︷︷ ︸
t replica

, 0, · · · , 0


′

,

d
(NTp×1)

=
[
d′1, d

′
2, · · · , d′T

]′
,

where d1 = β1, d2 = β2 − β1, · · · , dT = βT − βT−1. Then, we can express

βt =
t∑

s=1

ds ,

yit = β′tzt + εit = d′zt + εit .

Note that the coefficient vector d does not change over time as we stack up all the variations together
in one long vector. Accordingly, our objective function becomes

d̃ = arg min
{d}

{
1

T

T∑
t=1

(
yit − d′zt

)2
+ λ1

T∑
t=1

∥∥∥∥∥
t∑

s=1

ds

∥∥∥∥∥
1

+ λ2

T∑
t=2

‖dt‖2

}
.
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(ii) “First-order condition” :
As the regularization terms are not differentiable at zero, we consider subdifferentials as in convex

analysis (Bertsekas et al., 2003). For t = 1, · · · , T , a necessary and sufficient condition for a global
minimizer is

− 2

T

T∑
r=t

(
yr −

(
r∑
s=1

d̃s

)′
xr

)
xr + λ1

T∑
r=t

vr + λ2ut = 0Np×1 ,

where

vr,j = sgn

(
r∑
s=1

d̃s,j

)
= sgn

(
β̃r,j

)
, if β̃r,j 6= 0; and |vr,j | ≤ 1, if β̃r,j = 0 ;

ut =
d̃t∥∥∥d̃t∥∥∥

2

, if
∥∥∥d̃t∥∥∥

2
6= 0; and ‖ut‖2 ≤ 1, if

∥∥∥d̃t∥∥∥
2

= 0 .

Then, we can bound the FOC of RSS as

1

T

∥∥∥∥∥
T∑
r=t

(
yr −

(
r∑
s=1

d̃s

)′
xr

)
xr

∥∥∥∥∥
2

=
1

T

∥∥∥∥∥
T∑
r=t

(
yr − β̃′rxr

)
xr

∥∥∥∥∥
2

=
1

2

∥∥∥∥∥λ1

T∑
r=t

vr + λ2ut

∥∥∥∥∥
2

≤ 1

2

(
λ1T

√
Np+ λ2

)
.

Based on Assumption 6 (ii), we can neglect the first term on the right hand side as N is fixed in the
current setting, which leads to

1

T

∥∥∥∥∥
T∑
r=t

(
yr − β̃′rxr

)
xr

∥∥∥∥∥
2

≤ λ2

2
(1 + o (1)) .

Thus, the proofs of Theorems 3.1 and 3.2 in Qian and Su (2013) still hold.
(iii) Post-Lasso average RSS
Theorems 3.3 and 3.4 in Qian and Su (2013) determine the correct number of breaks based

on post-Lasso estimation. Let σ2
T = 1

T

∑T
t=1 ε

2
it, σ

2 (~τB, ~vB) denote the average RSS for the OLS
estimates given the set of break dates ~τB and variable selection ~vB, and σ2

(
~τB̃
)
denote the average

RSS for the OLS estimates given the set of break dates ~τB without variable selection. In an analogous
manner, we would like to show:

(i) T
IminJ

2
min

(
σ2
(
~τB̃, ~vB̃

)
− σ2

T

)
≥ c+ op (1), for any

(
~τB̃, ~vB̃

)
with B̃ < B;

(ii) δ−1
T

∣∣σ2
(
~τB̃, ~vB̃

)
− σ2

T

∣∣ = Op (1), for any
(
~τB̃, ~vB̃

)
with B̃ ≥ B.

Note that σ2
(
~τB̃, ~vB̃

)
≥ σ2

(
~τB̃
)
, which entails claim (i) and one direction of claim (ii): δ−1

T

(
σ2
(
~τB̃, ~vB̃

)
− σ2

T

)
>

−Op (1), for any
(
~τB̃, ~vB̃

)
with B̃ ≥ B. Moreover, Assumptions 2 (i), 3 (ii), 3 (iii), and 6 jointly
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imply that T 3/2λ1 → 0 and T 1/2λ2 as T →∞. Then, from the KKT condition with respect to βt,j ,

− 2

T

(
yt − β̃′txt

)
xt,j + λ1vt,j + λ2 (ut,j − ut+1,j) = 0 ,

where

vt,j = sgn
(
β̃t,j

)
, if β̃t,j 6= 0; and |vt,j | ≤ 1, if β̃t,j = 0 ;

ut,j =
d̃t,j∥∥∥d̃t∥∥∥

2

, if
∥∥∥d̃t∥∥∥

2
6= 0; and ‖ut‖2 ≤ 1, if

∥∥∥d̃t∥∥∥
2

= 0 .

Hence, all relevant regressors are included asymptotically, which guarantees the other direction of
claim (ii): δ−1

T

(
σ2
(
~τB̃, ~vB̃

)
− σ2

T

)
< Op (1), for any

(
~τB̃, ~vB̃

)
with B̃ ≥ B.

Therefore, we can obtain proposition 1 based on Theorems 3.1 - 3.4 and 3.6 in Qian and Su
(2013), and proposition 2 based on Theorem 3.5 in Qian and Su (2013).
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C Tables and Graphs

C.1 Simulation

Table 4: Descriptive Statistics for Signal-to-Noise Ratio

DGP Mean Med 25% 75% Std Skew Kurt
1 6.03 0.69 0.00 2.09 14.41 2.60 8.26
2 5.67 0.74 0.03 2.05 13.22 2.60 8.30
3 4.97 0.92 0.09 2.46 10.90 2.58 8.22
4 2.03 0.02 0.00 1.11 5.85 3.96 19.67
5 5.12 0.90 0.10 2.36 11.61 2.91 10.86

* The signal-to-noise ratio for each variable i is approximated by

SNRi ≈
V ar

(
Φ

(1,t)
i· Yt−1

)
V ar (εit)

where Φ
(1,t)
i· denotes the i-th row of Φ(1,t), the true time-varying coefficient matrix.

* Number of simulations nsim = 100. Cross-sectional dimension N = 100. For each DGP, we have 104 SNRs in total.

Table 5: Descriptive Statistics for Selected Tuning Parameters (λ1, λ2)

λ1

DGP Mean (×10−4) Med (×10−4) 25% (×10−4) 75% (×10−4) Std (×10−4) Skewness Kurtosis
1 3.52 2.36 0.79 3.60 4.24 2.48 5.68
2 2.36 2.12 0.69 3.05 2.42 3.27 15.92
3 2.66 2.25 0.81 3.30 2.61 2.98 12.36
4 1.54 1.63 0.69 1.85 1.13 3.98 27.14
5 2.36 2.26 0.74 3.12 2.25 4.28 29.49

λ2

DGP Mean (×10−2) Med (×10−2) 25% (×10−2) 75% (×10−2) Std (×10−2) Skewness Kurtosis
1 2.08 2.18 1.75 2.40 0.58 -0.37 0.61
2 2.07 2.10 1.45 2.40 0.89 1.83 8.33
3 2.06 2.04 1.65 2.32 0.87 3.01 17.00
4 2.29 1.29 0.75 1.83 4.42 5.94 41.76
5 2.59 2.13 1.50 2.53 3.40 7.68 68.45

* Number of simulations nsim = 100. Cross-sectional dimension N = 100. For each DGP, there are 104 pairs of
(λ1, λ2) in total, as we allow for different tuning parameters for different equations.
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Figure 17: DGP 5: With/Without Penalty Terms on the Coefficients
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C.2 Application

Table 6: Descriptive Statistics for Standardized Log Daily RV

Ticker Company Name Type Mkt-Cap Med 25% 75% Skew Kurt
AF Astoria Financial Corporation CB 1.24 -0.17 -0.75 0.65 0.63 3.10
ASBC Associated Banc-Corp CB 2.70 -0.15 -0.72 0.61 0.61 3.18
BAC Bank of America Corporation CB 152.58 -0.11 -0.77 0.56 0.78 3.50
BBT BB&T Corporation CB 26.46 -0.20 -0.72 0.56 0.89 3.50
BK The Bank of New York Mellon Corp. CB 38.81 -0.23 -0.67 0.46 1.28 5.24
BOH Bank of Hawaii Corporation CB 2.42 -0.22 -0.71 0.58 0.88 3.45
BPOP Popular, Inc. CB 3.00 -0.08 -0.81 0.78 0.25 2.30
BXS BancorpSouth, Inc. CB 2.16 -0.15 -0.69 0.53 0.79 3.75
C Citigroup Inc. CB 141.07 -0.17 -0.77 0.59 0.90 3.84
CBSH Commerce Bancshares, Inc. CB 4.08 -0.12 -0.66 0.56 0.57 3.32
CBU Community Bank System Inc. CB 1.44 -0.15 -0.72 0.59 0.70 3.59
CFR Cullen/Frost Bankers, Inc. CB 4.51 -0.22 -0.69 0.52 0.91 3.55
CMA Comerica Incorporated CB 8.36 -0.21 -0.74 0.61 0.82 3.25
CYN City National Corporation CB 3.76 -0.15 -0.75 0.61 0.65 3.05
EWBC East West Bancorp, Inc. CB 4.68 -0.23 -0.71 0.58 0.73 3.15
FBC Flagstar Bancorp Inc. CB 0.94 -0.03 -0.89 0.77 0.30 2.26
FCF First Commonwealth Financial Corp. CB 0.77 -0.16 -0.73 0.65 0.56 3.03
FITB Fifth Third Bancorp CB 17.04 -0.22 -0.75 0.57 0.97 3.83
FMER FirstMerit Corporation CB 3.12 -0.19 -0.70 0.53 0.89 4.07
FNB F.N.B. Corporation CB 1.99 -0.18 -0.71 0.57 0.70 3.50
FNFG First Niagara Financial Group Inc. CB 2.95 -0.16 -0.68 0.54 0.87 4.42
FULT Fulton Financial Corporation CB 2.18 -0.15 -0.72 0.65 0.66 3.48
HBAN Huntington Bancshares Incorporated CB 7.45 -0.16 -0.75 0.61 0.77 3.39
HCBK Hudson City Bancorp, Inc. CB 4.77 -0.15 -0.72 0.65 0.56 3.20
ING ING Groep N.V. CB 50.30 -0.13 -0.74 0.55 0.83 3.71
JPM JPMorgan Chase & Co. CB 201.74 -0.20 -0.73 0.52 0.99 3.89
KEY KeyCorp. CB 11.58 -0.16 -0.76 0.60 0.77 3.36
NTRS Northern Trust Corporation CB 14.14 -0.23 -0.68 0.45 1.23 4.84
ONB Old National Bancorp. CB 1.34 -0.15 -0.69 0.58 0.67 3.53
PBCT People’s United Financial Inc. CB 4.22 -0.17 -0.69 0.54 0.66 3.63
Type: Bank business types - CB stands for a commercial bank; IB for an investment bank; CC for a credit card company;

and INS for an insurance company.

Mkt-Cap: Market capitalization, as of 12/31/2013, unit: billion$.
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Ticker Company Name Type Mkt-Cap Med 25% 75% Skew Kurt
BPFH Boston Private Financial Holdings, Inc. CB 0.96 -0.19 -0.74 0.66 0.60 2.94
PFS Provident Financial Services, Inc. CB 0.95 -0.17 -0.73 0.62 0.74 3.44
PNC The PNC Financial Services Group, Inc. CB 44.22 -0.24 -0.74 0.58 0.93 3.54
RF Regions Financial Corporation CB 13.62 -0.14 -0.78 0.63 0.63 3.02
RJF Raymond James Financial, Inc. CB 6.79 -0.24 -0.69 0.50 1.01 3.91
RY Royal Bank of Canada CB 96.62 -0.15 -0.72 0.56 0.81 3.83
SNV Synovus Financial Corporation CB 3.04 0.07 -0.83 0.76 0.03 2.25
STI SunTrust Banks, Inc. CB 19.76 -0.15 -0.78 0.62 0.73 3.15
STSA Sterling Financial Corporation CB 2.07 -0.31 -0.76 0.75 0.66 2.58
STT State Street Corporation CB 27.20 -0.25 -0.69 0.47 1.31 5.12
SUSQ Susquehanna Bancshares, Inc. CB 1.82 -0.18 -0.73 0.67 0.57 2.95
TCB TCF Financial Corporation CB 2.50 -0.15 -0.72 0.57 0.72 3.39
TD The Toronto-Dominion Bank CB 87.31 -0.15 -0.73 0.55 0.78 3.62
TRMK Trustmark Corporation CB 1.55 -0.19 -0.70 0.59 0.85 3.85
UMPQ Umpqua Holdings Corporation CB 3.49 -0.21 -0.71 0.57 0.79 3.57
USB U.S. Bancorp CB 74.22 -0.17 -0.71 0.51 0.95 3.97
VLY Valley National Bancorp CB 1.91 -0.14 -0.69 0.53 0.67 3.47
WBS Webster Financial Corp. CB 2.62 -0.18 -0.77 0.62 0.70 3.09
WFC Wells Fargo & Company CB 258.51 -0.20 -0.77 0.59 0.91 3.49
WTFC Wintrust Financial Corporation CB 2.01 -0.21 -0.75 0.65 0.68 3.06
ZION Zions Bancorporation CB 5.18 -0.17 -0.77 0.64 0.66 2.92
BCS Barclays PLC IB 66.45 -0.20 -0.70 0.50 1.06 4.35
GS The Goldman Sachs Group, Inc. IB 72.71 -0.23 -0.67 0.42 1.28 5.22
NMR Nomura Holdings, Inc. IB 22.08 -0.15 -0.66 0.46 1.30 6.60
UBS UBS AG IB 74.69 -0.17 -0.76 0.59 0.81 3.33
AXP American Express Company CC 92.75 -0.23 -0.74 0.55 0.89 3.45
COF Capital One Financial Corporation CC 43.26 -0.23 -0.74 0.54 0.95 3.52
AIG American International Group, Inc. INS 75.95 -0.17 -0.72 0.56 0.90 3.95
BRKB Berkshire Hathaway Inc. INS 0.21 -0.16 -0.67 0.51 1.06 6.03
MET MetLife, Inc. INS 55.65 -0.19 -0.65 0.44 1.21 4.91
PRU Prudential Financial, Inc. INS 36.78 -0.19 -0.67 0.44 1.19 4.79
Type: Bank business types - CB stands for a commercial bank; IB for an investment bank; CC for a credit card company;

and INS for an insurance company.

Mkt-Cap: Market capitalization, as of 12/31/2013, unit: billion$.
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Table 7: Application: Descriptive Statistics for Selected Tuning Parameters (λ1, λ2)

Mean (×10−2) Med (×10−2) 25% (×10−2) 75% (×10−2) Std (×10−2) Skewness Kurtosis
λ1 1.45 0.44 0.37 3.21 1.79 1.33 0.18
λ2 42.28 41.00 35.85 48.74 11.61 0.57 0.63

* There are N = 61 pairs of (λ1, λ2) in total, as we allow for different tuning parameters for different equations.
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Figure 18: Time Paths of the Residues (Absolute Value) - 1
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Figure 19: Time Paths of the Residues (Absolute Value) - 2
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Figure 20: Time Paths of the Residues (Absolute Value) - 3
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