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Abstract

Event studies often conflate direct treatment effects with indirect effects operating

through endogenous covariate adjustment. We develop a dynamic panel event study

framework that separates these effects. The framework allows for persistent outcomes

and treatment effects and for covariates that respond to past outcomes and treatment

exposure. Under sequential exogeneity and homogeneous feedback, we establish point

identification of common parameters governing outcome and treatment effect dynamics,

the distribution of heterogeneous treatment effects, and the covariate feedback process.

We propose an algorithm for dynamic decomposition that enables researchers to assess

the relative importance of each effect in driving treatment effect dynamics.

Keywords: Event study, heterogeneous treatment effects, dynamic panel data, sequen-

tial exogeneity, feedback mechanisms
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1 Introduction

Event studies in the panel data setting aim to quantify how treatment effects evolve over time

and vary across units. When outcomes are persistent and covariates adjust endogenously to

past outcomes and treatment exposure, observed dynamic responses may not correspond to

a single causal mechanism. Instead, they may combine direct effects with indirect effects

operating through endogenous covariate adjustments. This distinction is empirically relevant

when treatment triggers equilibrium adjustment. For example, a minimum wage policy may

have a direct effect on wages but may also lead to changes in firm-level input demand, which

may in turn affect individual wages. Separating these effects permits an assessment of how
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much of the dynamic response reflects direct versus indirect effects through equilibrium-

induced covariate adjustment.

This paper develops a dynamic event study framework that separates these two effects.

The direct structural effect captures how outcomes respond to treatment holding the covari-

ate path fixed, while the indirect adjustment effect operates through covariates that evolve

endogenously over time. We consider a panel event study setting with units i = 1, . . . , N

observed over periods t = 0, . . . , T . For exposition, we present a simplified version of the

model. The outcome evolves in calendar time t according to

Yit = ρY Yi,t−1 + αi +X ′
itβ +

∑
j∈J

Dj
itδij + Uit, Uit

iid∼ N (0, σ2
U ), t = 1, . . . , T, (1)

where Yit ∈ R is the scalar outcome, Xit ∈ RK is a vector of time-varying covariates, and

αi captures unit-specific heterogeneity. Treatment is characterized by an event-time t0i ∈
{1, . . . , T}. Let J ⊂ Z denote a finite set of event-time indices for which dynamic treatment

effects are specified. For each j ∈ J , the event-time indicator Dj
it = 1{t − t0i = j} is a

deterministic function of t0i. The coefficients δij represent unit-specific dynamic treatment

effects at event time j and capture the direct structural response to treatment.

Following Botosaru and Liu (2025), we impose a parsimonious dynamic structure on

these heterogeneous treatment effects by assuming that they follow an autoregressive process

in event time:

δij = ρδδi,j−1 + εij , εij
iid∼ N (0, σ2

ε), j = 1, . . . , J, (2)

where ρδ is a common persistence parameter and εij are idiosyncratic innovations. Let

λi = (αi, δi0)
′ denote the vector of unobserved heterogeneity, and denote its conditional

distribution by

H(λi | I0
i ), I0

i = {Yi0, Xi0, t0i} .

The framework readily extends to higher-order dynamics, continuous treatment intensities,

and event-time leads for testing anticipation effects. Gaussianity in (1) and (2) is imposed for

likelihood-based estimation, while the identification results do not require a correct Gaussian

specification.

The parameter β captures the indirect adjustment channel, mapping changes in covariates

into changes in outcomes. In many applications, these covariates are policy-reactive and

adjust dynamically in response to treatment and past outcomes. As a result, treatment may

affect outcomes not only directly, but also indirectly through sequentially exogenous covariate

adjustments. Standard event study approaches typically rule out this feedback by imposing

strict exogeneity of covariates. While Botosaru and Liu (2025) relax this requirement to

allow for sequential exogeneity, they treat the covariate process as given and do not model
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or identify the adjustment mechanism itself.

This paper extends their framework by explicitly modeling and identifying the covari-

ate feedback process. We allow covariates to be predetermined and impose a homogeneous

feedback restriction, requiring the covariate adjustment rule to be common across units up

to observable conditioning variables. This restriction separates the two channels: the distri-

bution H(λi | I0
i ) governs unit-level heterogeneity in the direct structural treatment effect,

while β and the identified feedback process capture the indirect adjustment effects. The

framework therefore permits the inclusion of policy-reactive covariates and delivers an ex-

plicit decomposition of event study dynamics beyond reduced-form comparisons, facilitating

policy analysis in settings with sequentially exogenous covariate adjustment.

2 Model and Assumptions

We denote the history of variables up to time t as Y t
i = (Yi1, . . . , Yit)

′ andXt
i = (X ′

i1, . . . , X
′
it)

′.

Let θ = (ρY , ρδ, β, σ
2
U , σ

2
ε)

′ denote the vector of common structural parameters, and It
i ={

Y t
i , X

t
i , I0

i

}
denote the information set up to time t.

Assumption 1 (Sequential Exogeneity). For all t = 1, . . . , T , conditional on (It−1
i , Xit, λi),

Yit does not depend on future outcomes, covariates, or shocks; conditional on (It−1
i , λi), Xit

does not depend on current shocks, nor on future outcomes, covariates, or shocks. Moreover,

E[Uit | It−1
i , Xit, λi] = 0.

To achieve point identification of the feedback process in short panels, we impose the

following restriction on the feedback process, following Bonhomme (2025).

Assumption 2 (Homogeneous Feedback). Let ft(· | ·) denote the conditional density of Xit.

For all t = 1, . . . , T ,

ft(Xit | It−1
i , λi) = ft(Xit | It−1

i ) a.s., (3)

with the feedback factor defined below being positive on the support of IT
i :

g(XT
i | Y T

i , I0
i ) =

T∏
t=1

ft(Xit | It−1
i ). (4)

Under Assumption 1, covariates Xit can depend on λi through past outcomes in complex

ways. Assumption 2 breaks this dependence by requiring the conditional covariate adjustment

rule (3) to be the same across individuals, regardless of their λi, conditional on the observable

history It−1
i . This restriction delivers a clean separation between the direct structural effect

and the indirect adjustment effect. Conditional on (XT
i , I0

i ), the likelihood kernel for Y T
i given
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λi coincides with the representation studied in Botosaru and Liu (2025), while all information

about the indirect adjustment effect is captured by g(XT
i | Y T

i , I0
i ). This factorization allows

us to treat the feedback mechanism as a separately identified component and to apply the

identification arguments of Botosaru and Liu (2025) to the conditional distribution of Y T
i

given (XT
i , I0

i ) to identify the direct structural effect. The positivity condition on g(XT
i |

Y T
i , I0

i ) ensures that this decomposition is well-defined.

3 Identification

We now establish that the model delivers point identification of both the direct and indirect

effects. Specifically, we identify: (i) the common parameters θ, (ii) the distribution of unob-

served heterogeneity H(λi | I0
i ), which characterizes the direct structural effect, and (iii) the

feedback process ft(Xit | It−1
i ), which characterizes the indirect adjustment effect.

Theorem 1 (Identification). Suppose
{
Yit, Xit, {Dj

it}j∈J
}T

t=1
follow (1) and (2). Let As-

sumptions 1–2 hold, and suppose the regularity conditions of Botosaru and Liu (2025) for

identification are satisfied (i.i.d. sampling over i, conditional independence of errors over

calendar and event times, nonvanishing and differentiable characteristic functions, and rank

condition for the event study design). Then, θ, H(λi | I0
i ), and {ft(Xit | It−1

i )}Tt=1 are iden-

tified. Moreover, the cohort-specific distribution H(λi | t0i) and unconditional distribution

H(λi) are identified.

Remark 1 (Time Effects). It is conventional to allow for additive time effects {γt} in the

outcome equation. Lemma 1 in the Supplemental Appendix shows that such effects potentially

entering (1) can be removed by cross-sectional demeaning. Since this transformation leaves θ

and λi unchanged, Theorem 1 continues to apply provided Assumptions 1 and 2 are interpreted

for the demeaned process
{
Ẏit, Ẋit

}
and the corresponding initial conditions in İ0

i . Thus {γt}

are pure nuisance parameters that do not affect identification of H(λi | İ0
i ).

4 Counterfactual Analysis and Dynamic Decomposition

The main contribution of our framework is that it enables the decomposition of dynamic

treatment effects into direct and indirect effects, which allows counterfactual analysis in-

corporating both channels. The identified objects θ, H(λi | I0
i ), and {ft(Xit | It−1

i )}Tt=1

characterize both the heterogeneous treatment effects and the dynamic adjustment of covari-

ates following treatment.

The factorization in the proof of Theorem 1 implies that in the first step, the estima-

tion of θ and H(λi | I0
i ) can proceed as in Botosaru and Liu (2025). In a second step, the
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homogeneous feedback process for covariates can be estimated by modeling the transition

densities ft(Xit | It−1
i ), using, e.g., parametric Markov models or sieve methods. Under our

assumptions, the parameters governing the direct channel (θ,H) and the feedback mechanism

enter the likelihood in separable blocks, so estimation of (θ,H) need not rely on a particular

parametric specification of the feedback model, provided the feedback factor g is estimated

consistently on the relevant support. The feedback model can therefore be selected to bal-

ance flexibility and parsimony depending on the intended decomposition and counterfactual

exercises.

Given an alternative treatment timing t∗0i and/or alternative initial conditions {Y ∗
i0, X

∗
i0},

one can construct joint counterfactual paths
{
Y T,∗
i , XT,∗

i

}
as described in Algorithm 1. Start-

ing from the counterfactual initial conditions I0,∗
i , latent heterogeneity λi is drawn from

H(λi | I0,∗
i ) and counterfactual treatment effects are generated according to (2). The system

is then iterated forward in calendar time, drawing covariates from the estimated feedback

process and constructing outcomes using (1), which combines the direct effect through {δ∗ij}
and the indirect effect through X∗

it and β.

The resulting counterfactual paths decompose dynamic event study responses into a di-

rect structural component, driven by latent heterogeneity and treatment effect dynamics,

and an indirect component operating through sequentially exogenous covariate adjustments.

This decomposition is empirically relevant because it distinguishes between treatment effects

that arise from heterogeneous structural responses versus those that operate through equi-

librium adjustments. For example, in a minimum wage study, the direct effect captures how

firm productivity responds to the wage change, while the indirect effect captures how firm

adjustments in hours or employment composition feed back into productivity. The frame-

work provides an approach to quantifying each effect, enabling researchers to assess their

relative importance in driving event study dynamics and facilitating counterfactual analysis

that propagates both effects.

5 Extensions

First, the homogeneous feedback framework is not tied to the linear model in (1). In principle,

one can replace the outcome equation by a nonlinear panel model Yit ∼ fθ(· | It−1
i , Xit, λi),

where θ is a finite-dimensional parameter and λi collects unobserved unit-specific hetero-

geneity. Examples include dynamic logit or probit models, Poisson or negative binomial

count models, and Tobit models for censored outcomes. Under Assumptions 1–2, once we

factor out the feedback term, the conditional distribution of Y T
i | XT

i , I0
i depends on (θ,H)

only through an average over λi. Identification of (θ,H) can then proceed by applying the

relevant nonlinear identification results to this conditional distribution, while the feedback
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Algorithm 1 Simulation of Counterfactual Paths
{
Y T,∗
i , XT,∗

i

}
1: Input: θ, H(λi | I0

i ),
{
ft(Xit | It−1

i )
}T
t=1

, alternative timing t∗0i, and/or alternative
initial conditions {Y ∗

i0, X
∗
i0}.

2: Set {Y ∗
i0, X

∗
i0} to observed or chosen counterfactual initial conditions.

3: Draw λi = (αi, δi0)
′ from H(λi | I0,∗

i ), with I0,∗
i = {Y ∗

i0, X
∗
i0, t

∗
0i}.

4: for j = 1 to J do
5: Draw error term: ε∗ij ∼ N (0, σ2

ε).
6: Update treatment effect: δ∗ij = ρδδ

∗
i,j−1 + ε∗ij .

7: end for
8: for t = 1 to T do
9: Draw covariate: X∗

it ∼ ft(· | It−1,∗
i ).

10: Draw error term: U∗
it ∼ N (0, σ2

U ).

11: Update outcome: Y ∗
it = ρY Y

∗
i,t−1 + αi + (X∗

it)
′β +

∑
j∈J Dj,∗

it δ∗ij + U∗
it.

12: end for
13: Output: Counterfactual paths

{
Y T,∗
i , XT,∗

i

}
.

process g(XT
i | Y T

i , I0
i ) remains a separately identified component.

The homogeneous feedback assumption in (3) can be relaxed to allow for observed group-

specific covariate adjustment rules. That is, letGi denote an observed group indicator, such as

industry, region, or demographic category, and assume that for each t, ft(Xit | It−1
i , Gi, λi) =

ft(Xit | It−1
i , Gi). That is, conditional on observable history and group membership, the

covariate adjustment process does not depend on unobserved heterogeneity, but may vary

across groups. Under this modification, the likelihood factorization applies group by group.

In particular, for each g, θ and H(λi | I0
i , Gi = g) are identified as before.
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A Proof of Theorem 1

Proof. The proof proceeds by factoring the joint likelihood of the data to separate the feed-

back process for XT
i from the structural outcome model for Y T

i .

Let L(λi;Y
T
i , XT

i | I0
i ) denote the likelihood of the observed trajectory for unit i condi-

tional on I0
i . By the law of total probability, the conditional likelihood of the observables

given I0
i is

f(Y T
i , XT

i | I0
i ) =

∫
L(λi;Y

T
i , XT

i | I0
i )dH(λi | I0

i ). (5)

Using Assumption 1, we decompose L(λi;Y
T
i , XT

i | I0
i ) as a product over time. For t ≥ 1 the

transition kernels depend on the history through (It−1
i , Xit, λi), and conditioning additionally

on I0
i does not change the transition densities. Thus we can write

L(λi;Y
T
i , XT

i | I0
i ) =

T∏
t=1

f(Yit | It−1
i , Xit, λi)ft(Xit | It−1

i , λi)

=

(
T∏
t=1

f(Yit | It−1
i , Xit, λi)

)
︸ ︷︷ ︸

=LSE(λi;Y T
i |XT

i ,I0
i )

×

(
T∏
t=1

ft(Xit | It−1
i , λi)

)
︸ ︷︷ ︸

=g(XT
i |Y T

i ,I0
i )

.

By Assumption 2, the feedback term g(XT
i | Y T

i , I0
i ) defined in (4) does not depend on λi

and is identified from the joint distribution f(Y T
i , XT

i | I0
i ) via standard factorization: for

each t = 1, . . . , T ,

ft(Xit | It−1
i ) =

f(Y t−1
i , Xt

i | I0
i )

f(Y t−1
i , Xt−1

i | I0
i )

,

where the numerator and denominator are identified by marginalization, and the positivity

condition in Assumption 2 ensures the ratio is well-defined.

Substituting (4) into (5) and rearranging, we define the reweighted conditional quasi-

likelihood

f̃(Y T
i | XT

i , I0
i ) =

f(Y T
i , XT

i | I0
i )

g(XT
i | Y T

i , I0
i )

=

∫
LSE(λi;Y

T
i | XT

i , I0
i )dH(λi | I0

i ). (6)

The right hand side of (6) matches the representation in Botosaru and Liu (2025), so ap-

plying their identification argument under the stated regularity conditions establishes the

identification of θ and H(λi | I0
i ). Finally, H(λi | t0i) and H(λi) are identified by integrating

H(λi | I0
i ) over the distribution of I0

i conditional on t0i and unconditionally, respectively.
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B Supplemental Appendix

Lemma 1 (Elimination of Time Effects). Suppose the outcome equation (1) is augmented

with additive time effects,

Yit = ρY Yi,t−1 + αi +X ′
itβ +

∑
j∈J

Dj
itδij + γt + Uit, t = 1, . . . , T.

Define the cross-sectional averages

Ȳt =
1

N

N∑
i=1

Yit, X̄t =
1

N

N∑
i=1

Xit, ᾱ =
1

N

N∑
i=1

αi, Ūt =
1

N

N∑
i=1

Uit,

and

D̄t(δ) =
1

N

N∑
i=1

∑
j∈J

Dj
itδij .

Let the demeaned variables be

Ẏit = Yit − Ȳt, Ẋit = Xit − X̄t, α̇i = αi − ᾱ, U̇it = Uit − Ūt.

Then the demeaned outcome satisfies

Ẏit = ρY Ẏi,t−1 + α̇i +

∑
j∈J

Dj
itδij − D̄t(δ)

+ Ẋ ′
itβ + U̇it, (7)

so that the time effects {γt} are eliminated from the dynamic equation for Ẏit.

Proof. Averaging the augmented outcome equation over i = 1, . . . , N yields

Ȳt = ρY Ȳt−1 + ᾱ+ D̄t(δ) + γt + X̄ ′
tβ + Ūt.

Subtracting this average from the individual equation gives

Yit − Ȳt = ρY (Yi,t−1 − Ȳt−1) + (αi − ᾱ)

+

∑
j∈J

Dj
itδij − D̄t(δ)

+ (γt − γt) + (Xit − X̄t)
′β + (Uit − Ūt).

The term (γt − γt) is identically zero. Using the definitions of the demeaned variables, this
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simplifies to

Ẏit = ρY Ẏi,t−1 + α̇i +

∑
j∈J

Dj
itδij − D̄t(δ)

+ Ẋ ′
itβ + U̇it,

which is exactly (7). Hence the time effects {γt} are eliminated from the dynamic equation

for the demeaned outcome.
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