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1 Introduction

Two decades into the “credibility revolution” popularized by Mostly Harmless Econometrics,

much work in applied microeconomics continues to rely on relatively simple reduced-form

models to untangle cause-and-effect from observational data. In the simplest case, and the

one we consider below, a researcher argues that a treatment D is as good as randomly

assigned after adjusting for a set of control variables X and goes on to report the coefficient

onD from a regression of Y on (D,X) as the causal effect of interest. Naturally this selection-

on-observables approach is only as good as the choice of controls; researchers who rely on it

typically devote much of their paper to defending the choice of X in their application.

All else equal, a selection-on-observables strategy is more convincing when it includes

more observables. For this reason the dimension of X can be very large relative to sample

size. Even if there are relatively few “underlying” control variables, fully adjusting for them

may require us to include a large number of interactions and other transformations in our

regression. Applied researchers thus face a difficult trade-off: including more controls reduces

the risk of bias but can lead to extremely imprecise estimates of the causal effect of interest.

In this paper, we provide a simple, fully Bayesian approach to navigating this bias-

variance trade-off in a workhorse partially linear model: Bayesian Double Machine Learning

(BDML). While our methods are Bayesian, the resulting point and interval estimators are

designed to appeal to a broad audience. For Bayesians, BDML offers a natural way to bring

the full Bayesian toolbox to bear on high-dimensional causal inference problems in applied

microeconomics. For Frequentists, BDML provides superior finite-sample performance in

practice–lower root mean-squared error and improved coverage of confidence intervals–while

delivering the same attractive asymptotic guarantees as existing Frequentist approaches.

Any attempt to tame the estimation uncertainty that arises from including many con-

trols relies on regularization, also known as shrinkage. Rather than “projecting out” X

from Y and D using ordinary least squares (OLS), a regularized estimator constrains the

high-dimensional vector β of coefficients on X in the regression of Y on (D,X). Bayesian

approaches do so by placing a prior on β; machine learning (ML) approaches do so either by

adding a penalty term to the objective function to favor “smaller” values for the elements of

β, as in LASSO or Ridge, or by penalizing model complexity through implicit algorithmic

constraints, as in random forests and gradient boosting.

Whether Bayesian or Frequentist, implicit or explicit, any application of regularization to

causal inference problems faces a key challenge: regularization-induced confounding (RIC).1

Unlike OLS, regularized estimators only partially adjust D and Y for the observed con-

1This term was coined by Hahn et al. (2018).
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founders X. This induces a correlation between D and the regularized regression residuals,

biasing the estimated causal effect. Granted, researchers must be prepared to accept at least

some increase in bias in exchange for reduced estimation uncertainty. The problem of RIC

is that this bias can be extremely sensitive to the precise way in which regularization is

carried out, depending on the relationship between D and X. Indeed, näıve approaches to

regularized estimation can easily increase the root mean-squared error (RMSE) of our causal

effect estimator, adding a bias that far outweighs the reduction in variance. Crucially, our

BDML approach side-steps this problem completely: using a simple re-parameterization of

the model, we avoid RIC while relying on standard methods for Bayesian linear regression.

From a subjective Bayesian point of view, RIC may seem puzzling. If we believe our

prior and likelihood, Bayes optimality requires us to base estimation and inference on the

implied posterior. In practice, however, priors are often chosen for pragmatic reasons, and as

Sims (2012) notes, such priors “can unintentionally imply dogmatic beliefs about parameters

of interest” when expanded “unthinkingly to high dimensions.” Linero (2023) shows that

the causal inference problem we study here has this problem in spades. It is common, and

convenient in practice, to place independent priors on γ and β, the coefficients on X in

the “propensity score” and “outcome” regressions, respectively. In low dimensions, this is

innocuous. In high dimensions, on the other hand, it implies a dogmatic prior belief that

there is no selection bias. If we truly believed this, of course, there would be no reason to

adjust for X in the first place!

To avoid prior dogmatism without the need to elicit a dependent prior for (γ, β), BDML

replaces the outcome regression of Y on (D,X) with a reduced form regression of Y on X.

This leaves us with a bivariate, seemingly unrelated regression of (Y,D) on X. Under the

selection-on-observables assumption, the error terms of these two equations are correlated,

and their covariance matrix contains all the information needed to carry out estimation and

inference for the causal effect of D on Y . We show that placing independent priors on the

coefficients of the seemingly unrelated regression equations runs no risk of prior dogmatism,

regardless of the dimension of X. Any standard prior on the error covariance matrix implies

a plausible range for the a priori selection bias.

We call our method BDML to highlight its connection to the Frequentist Double Machine

Learning (FDML) approach that has become extremely popular in recent years (see for

example Chernozhukov et al., 2018). Like our proposal, FDML can be viewed as a means

of avoiding RIC when carrying out causal inference in high dimensions. In the partially

linear regression model we study here, FDML likewise considers a bivariate reduced form

regression of (Y,D) on X. After estimating the coefficients of these two regressions using an

ML approach, FDML recovers the causal effect of interest using a further regression of the Y -
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residuals on the D-residuals. This approach is computationally convenient and can be given

a rigorous large-sample justification. In practice, however, it amounts to treating the reduced

form coefficients as if they were known–that is, FDML profiles out the nuisance parameters

by plugging in point estimates. When the dimension ofX is large relative to sample size there

may be considerable sampling uncertainty in the reduced form coefficients. BDML explicitly

acknowledges this by marginalizing over all sources of uncertainty in the problem, leading

to improved small-sample performance as measured by traditional Frequentist metrics, e.g.

root mean-squared error (RMSE) and coverage probability.

Crucially, the finite-sample advantages of BDML do not come at the expense of large

sample guarantees. To show this, we study a fixed coefficient asymptotic sequence in which

the number of control regressors p grows with sample size n, matching the approach of the

FDML literature. We consider three estimators: BDML, FDML, and a “näive” Bayesian

alterantive that ignores RIC. Under regularity conditions, we show that all three yield con-

sistent estimators of the causal effect of interest. When they are
√
n-consistency, we likewise

show that all three have the same asymptotic variance. The asymptotic bias of BDML and

FDML, however, is strictly smaller than that of the näive Bayesian approach: p2/n2 com-

pared to p/n. Moreover, the näive estimator is only
√
n-consistent if the number of controls

is much smaller than sample size: p/
√
n → 0. BDML and FDML, in contrast, allow for

a much larger number of controls, requiring only p/(n3/4) → 0. Asymptotically, BDML

improves on the näive Bayesian approach while matching the performance of FDML.

Continuing our asymptotic analysis, we build on results from Walker (2025) to establish

a Bernstein-von Mises (BvM) theorem for BDML when (log n)2 ≺ p ≺
√
n.2 This result

further strengthens the Frequentist appeal of BDML, showing that posterior credible sets

constructed using our approach are valid Frequentist confidence intervals. Our BvM result

further establishes the semi-parametric efficiency of BDML while imposing weaker assump-

tions on the prior than the recent Bayesian literature (e.g. Breunig et al., 2024; Luo et al.,

2023). While we prove the BvM theorem under the assumption of Gaussian errors, these

results are robust to mis-specification of the error distribution.

We conclude by comparing the finite-sample performance of BDML against a range of

Bayesian and Frequentist competitors in a comprehensive simulation study and a number of

empirical examples drawn from the recent literature in applied microeconomics. Our results

show that BDML provides the “best of both worlds”, matching the asymptotic properties of

Frequentist alternatives while delivering dramatically improved finite-sample performance.

Compared existing Bayesian alternatives (e.g. Hahn et al., 2020; Linero, 2023), BDML main-

tains its impressive performance across a much wider range of data-generating processes

2We use the symbol a ≺ b to indicate that limn→∞ a/b → 0.
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(DGPs). Since BDML is fully-Bayesian, it correctly accounts for all sources of sampling

uncertainty, smoothly adapting to key features of the DGP.

This paper relates to a large recent literature on (Frequentist) double machine learning

(FDML), also known as “double-debiased machine learning”. See Ahrens et al. (2025) for

a comprehensive practical introduction and Chernozhukov et al. (2018) for further theoret-

ical details. FDML provides a general framework for estimating a low-dimensional target

parameter using moment conditions that depend on a high-dimensional nuisance parameter.

The näıve plug-in approach–constructing a preliminary ML estimate of the nuisance param-

eter and plugging it into the original moment condition–has two serious shortcomings. The

first is regularization bias, a more general term for RIC. The second is overfitting bias from

using the same data twice–first to estimate the nuisance parameter and then to estimate the

target parameter. By orthogonalizing the second-step moment condition with respect to the

nuisance parameter, FDML inoculates against regularization bias to first order. By using

sample splitting, it likewise avoids overfitting bias.

Two key advantages of FDML are its simplicity and generality: whenever we can derive

the appropriate orthogonalized moment condition, FDML justifies treating the estimated

nuisance parameter as if it were known while providing theoretical guarantees across a wide

range of first-step ML estimators. These attractive properties have led applied researchers

in economics to employ FDML in a range of empirical setting, especially the “post-double

selection” (PDS) LASSO approach of Belloni et al. (2014). Recent papers that apply FDML

as their primary method in an observational setting include Dube et al. (2020) who estimate

monopsony power in online labor markets, and Yang et al. (2020) who estimate the “Big N”

audit quality effect. While its primary motivation is to reduce bias in observational settings,

FDML is also widely applied in experimental settings to flexibly incorporate covariates, either

as a robustness check (Alsan et al., 2023; Armand et al., 2020) or with the aim of improving

estimation precision (Chioda et al., 2021; Cotti et al., 2025; Delfino, 2024; Hussam et al.,

2022). FDML has also been used to evaluate, and ultimately question, the plausibility of the

selection-on-observables assumption, either by comparing against an instrumental variables

(IV) benchmark (Duflo et al., 2021) or by creating a “simulated” observational dataset from

a collection of randomized controlled trials (Gordon et al., 2023).

Although FDML is indisputably a valuable tool in applied economics, some recent work

suggests that its finite sample performance can be sensitive to details of the first-step ML

procedure in ways that may lead it to underperform in practice (Angrist and Frandsen, 2022;

Bach et al., 2024; Wüthrich and Zhu, 2023). Ahrens et al. (2025) in particular stress that

“poorly tuned or ill-suited nuisance estimators can produce severely misleading point esti-

mates”. As such, they encourage researchers using FDML to “carefully choose and tune their
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nuisance function estimators and consider a rich set of estimation approaches.” While by

no means an insurmountable challenge, the need for careful tuning makes FDML more com-

plicated to implement in practice than its theoretical simplicity may suggest. In our view,

this challenge makes Bayesian alternatives to FDML particularly appealing. By marginal-

izing over uncertainty in the nuisance parameter, BDML provides a fuller accounting for

finite-sample estimation uncertainty. Moreover, our method can provide robust performance

across a wider range of data generating processes through the use of hierarchical priors,

which adapt the degree of shrinkage to the data at hand.

Our work also relates to a growing literature on Bayesian approaches to causal inference:

see Heckman et al. (2014), Li et al. (2023), and Linero and Antonelli (2023) for broad

discussions of this field. The studies closest to ours are Hahn et al. (2018, 2020) and Linero

(2023), who consider the same partially linear model that we analyze below.3 Compared to

BDML, which marginalizes over all sources of uncertainty, these papers adopt a “hybrid”

strategy: profiling over some parts of the problem and marginalizing over others. This hybrid

approach is computationally convenient and can be given a sound Bayesian justification.

Our simulation studies reveal, however, that the full marginalization provided by BDML is

crucial for obtaining inferences that have good frequentist properties across a wide range of

data generating properties. As mentioned above, our BvM results draw heavily on Walker

(2025). Recent Bayesian work exploring issues related to those considered here, albeit in

different models, includes Saarela et al. (2016), Ray and Van Der Vaart (2020), Antonelli

et al. (2022),Luo et al. (2023), Breunig et al. (2024) and Breunig et al. (2025).

The remainder of this paper is organized as follows. Section 2 introduces our model

and notation while Section 3 discusses the problem of RIC in detail. Section 4 presents our

Bayesian Double Machine Learning approach and describes how it relates to both Bayesian

and Frequentist alternatives, while Section 5 presents a comparison of the asymptotic prop-

erties of BDML, FDML, and a näıve Bayesian alternative. Finally, Section 6 presents a sim-

ulation study comparing the finite-sample performance of BDML against a range of Bayesian

and Frequentist competitors. Proofs appear in Section A.

2 The Model

We consider the problem of estimating and carrying out inference for the parameter α in a

partially linear structural model of the form

Yi = αD + g(Xi) + εi, E[εi|Di, Xi] = 0 (1)

3See Belloni et al. (2014) for a frequentist analysis of the partially linear model.
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where Yi is the outcome of interest, Di is the “treatment” or “policy” variable, and Xi is a

vector of control variables.4 We do not assume that Di is binary; if it is, (1) can be viewed

as a special case of the “selection on observables” framework. For reasons that will become

clear below, we introduce an additional reduced form model, namely

Di = m(Xi) + Vi, E[Vi|Xi] = 0 (2)

where m(Xi) ≡ E[Di|Xi] so that (2) holds by construction and we have

Cov(εi, Vi) = E[εVi] = E[εiDi]−E[εim(Xi)] = 0 (3)

by iterated expectations and E[ε|Xi, Di] = 0, since εi and Vi are mean zero.

A leading example of (1)–(3) assumes that g(Xi) = X ′
iβ and m(Xi) = X ′

iγ where β and

γ are p-vectors of unknown regression coefficients. This simplification gives

Yi = αDi +X ′
iβ + εi, E[εi|Xi, Di] = 0 (4)

Di = X ′
iγ + Vi, E[Vi|Xi] = 0 (5)

where we have

Cov(εi, Vi) = Cov(εi, Di −X ′
iγ) = Cov(εi, Di)− Cov(εi, X

′
i)γ = 0. (6)

While the methods we develop in this paper are easily extended to the general case

of (1)–(3), we focus on the special case of (4)–(6) to simplify the exposition. We assume

throughout that the dimension p of Xi is large relative to sample size n. If the dimension of

Xi exceeds the number of observations, then there is no unique ordinary least squares (OLS)

estimator of α based on (4). Even if there are more observations than regressors, the OLS

estimator of α is likely to be extremely noisy if Xi if contains many “relatively unimportant”

control variables–variables that, taken individually, have little predictive power for Di and

Yi. This situation is arguably quite common in practice. Applied researchers may know

which controls it would suffice to adjust for without being sure of which are most important.

3 Regularization-Induced Confounding (RIC)

As is well-known, the OLS estimator for α corresponds to the Bayesian posterior mean under

(4) with a normal distribution for εi and flat priors on (α, β). Accordingly, in a situation

4Our model and parameter of interest match those of Belloni et al. (2014).
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where we expect OLS to perform poorly because the dimension of Xi is large, a natural idea

would be to “shrink” our estimates by introducing an informative prior on β. While there

are many possibilities for the choice of shrinkage prior, the message of this section is that

none of them is likely to perform well in practice. To illustrate this point, suppose we retain

a flat prior for α but place independent normal priors on the elements of β:

β(1) . . . β(p) ∼ iid Normal(0, σ2
β). (7)

Under the simplifying assumption that σ2
ε is known, the Bayes estimator for (α, β) under

squared error loss has a closed-form solution:[
α̂λ

β̂λ

]
=

[(
D′D D′X

X ′D X ′X

)
+

(
0 0′p

0p λIp

)]−1(
D′Y

X ′Y

)
, λ ≡ σ2

ε

σ2
β

. (8)

As seen from (8), the Bayes estimator in this setting corresponds to a modified version of

Ridge Regression in which α is unpenalized. As usual in Ridge Regression, we implicitly

assume that Di, Xi and Yi have all been de-meaned so that the regression requires no

intercept. If (7) represents genuine subjective researcher beliefs over β then, from a Bayesian

point of view, α̂λ is the mean-squared error optimal estimator of α. In practice, however,

shrinkage priors like (7) are often used for pragmatic reasons: when Xi is high-dimensional,

it may be difficult if not impossible to elicit a fully-informative prior over β. For the purposes

of predicting Yi this is usually innocuous, provided that σ2
β is chosen in a reasonable way. But

when the goal is to understand the causal effect of Di, the situation changes dramatically.

To illustrate this point, we derive the (Frequentist) bias and variance of α̂λ as follows under

the simplifying assumption that ε is homoskedastic.5

Assumption 1. Y = αD +X ′β + ε where E[ε|X,D] = 0 and Var(ε|X,D) = σ2
Ip.

Proposition 1. Let ρ̂′ ≡ (D′D)−1D′X, and R ≡ ξ̂′ξ̂ where ξ̂ ≡ [Ip −D(D′D)−1D′]X. Then

Assumption 1 implies

Bias(α̂λ|X,D) = ρ̂′
[
Ip − (R + λIp)

−1R
]
β (9)

Var(α̂λ|X,D) = σ2
ε

[
(D′D)−1 + ρ̂′(R + λIp)

−1R(R + λIp)
−1ρ̂
]

(10)

where α̂λ is as defined in (8).

The jth element of ρ̂ from Proposition 1 is the slope coefficient from a regression of X
(j)
i

on Di without an intercept (both have been de-meaned) while the jth column of ξ̂ is the

5Hahn et al. (2018) derive a special case of Bias(α̂λ), but their expression contains a minor error.
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corresponding vector of residuals. Setting λ = 0 corresponds to σ2
β → ∞ and gives the OLS

estimator of α. In this case the bias is zero and the variance simplifies to

Var(α̂OLS) = σ2
ε

[
(D′D)−1 + ρ̂′R−1ρ̂

]
.

If σ2
β is finite, then λ ̸= 0 and α̂λ is biased unless ρ̂ or β equals zero. Of course this in and

of itself is not a convincing argument against shrinkage. In general, higher values of λ imply

lower values of Var(α̂). Even if n > p so that OLS remains feasible, we should still prefer to

set λ > 0 provided that the decrease in variance outweighs the increase in (squared) bias.

The problem isn’t the presence of bias but rather its dependence on other aspects of the

model. We include covariates on the right-hand side of (4) precisely because we believe that

α would lack a causal interpretation without them. This implies an a priori belief that the

control variables covary with both the outcome and treatment. As seen from (9), for a fixed

value of λ the bias of α̂λ involves both β and ρ̂. All else equal, larger values of ρ̂(j)β(j) imply

a higher bias. Our beliefs about the magnitude of β(j) are already accounted for, at least in

principle. Since λ = σ2
ε/σ

2
β, a belief that |β(j)| will be large on average leads us to shrink

less, using a smaller value of λ and keeping the bias in check. But Bias(α̂λ) also depends

crucially on ρ̂, and λ fails to take this into account.6 If the treatment and controls are

strongly correlated, even a reasonable choice for σ2
β can produce a highly biased estimator

of α, a phenomenon that Hahn et al. (2018) call regularization-induced confounding

(RIC). The name alludes to the fact that “regularizing” the OLS estimator by setting

λ > 0 causes the residuals to violate the sample analogue of E[Diεi|Xi] = 0, the population

moment condition that gives α a causal interpretation. While RIC is typically equated with

unacceptably high bias, numerical experiments using (9)–(10) confirm that RIC implies an

unfavorable bias-variance trade-off. This is the sense in which we use the term.

The trouble, it seems, is failing to account for our prior beliefs about γ, the reduced form

coefficient from (5) that reflects the dependence between Di and Xi. A natural solution,

then, would be to incorporate these beliefs into our model. Doing so requires us to add

an equation and work with a bivariate regression including both (4) and (5). Staying as

close as possible to the single-equation example from above, suppose we specify a normal

likelihood for (εi, Vi) and place independent normal shrinkage priors on the elements of β

and γ, all centered at zero. In this model, an additional hyperparameter σ2
γ quantifies our

prior beliefs about the strength of dependence between the treatment and control variables.

Unfortunately, σ2
γ will have no effect whatsoever on our estimates or inferences for α. Recall

from (6) above that the causal assumptions of our model require Cov(εi, Vi) = 0. Adopting

6The stated priors on (α, β) along with the fixed known value of σ2
ε implicitly encode beliefs about the

likely magnitude of ρ̂, as we explain further below.
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the shorthand θ to refer to all model parameters, this implies that the likelihood factorizes

as follows

f(Y,D|X, θ) = f(Y |D,X, θ)f(D|X, θ) = f(Y |D,X, α, β, σ2
ε)f(D|X, γ, σ2

V ). (11)

Notice that the first factor involves only (α, β, σ2
ε) while the second involves only (γ, σ2

V ).

Therefore, unless we specify a prior in which β and γ Treating σ2
ε as known, the bias and

variance expressions from (9)–(10) continue to hold and the problem of RIC remains. Linero

(2023) calls a causal model in which the likelihood factorizes as in (11) and β and γ are a

priori independent a Bayesian-ignorable model, and points out that such models imply

a highly dogmatic prior for the extent of selection bias when p is large. This is another

lens through which to view RIC: it arises from “accidentally” imposing a strong prior belief

that there is little or no selection bias. We explore this phenomenon in more detail in

subsection 5.2 below.

4 Bayesian Double Machine Learning (BDML)

In principle, specifying an informative prior that incorporates dependence between β from

(4) and γ from (5) would solve the problem of RIC introduced in section 3. Eliciting such

a prior in practice, however, may be extremely challenging, especially when the number

of control variables is large. This motivates us to introduce an alternative approach, one

that is inspired by ideas from the recent Frequentist literature on so-called “double-debiased

machine learning”, often referred to as “double machine learning” for short. Substituting

(5) into (4) gives the reduced form regression

Yi = X ′
i(αγ + β) + (εi + αVi) = X ′

iδ + Ui (12)

where Ui ≡ εi+αVi and δ ≡ αγ+β. Since since E[εi|Xi, Di] = 0 by (4) andXi is uncorrelated

with Vi by (5), Xi is uncorrelated with Ui. Assuming normal errors for simplicity, this gives

the following bivariate reduced form regression model

Yi = X ′
iδ + Ui

Di = X ′
iγ + Vi

[
Ui

Vi

]∣∣∣∣∣Xi ∼ Normal(0,Σ). (13)

Given that our goal is to estimate and carry out inference for α, it may seem odd that we

have eliminated this parameter from the regression equation for Y . Crucially, however, the

errors (Ui, Vi) in (13) are correlated whenever α ̸= 0. This is what will allow us to learn the

10



causal effect of interest. By (6) we have Cov(ε, V ) = 0 and thus

Var(Ui) = Var(εi + αVi) = Var(Ui) + α2Var(Vi) = σ2
ε + α2σ2

V

Cov(Ui, Vi) = Cov(εi + αVi, Vi) = ασ2
V

by the definition of U . Therefore,

Σ ≡ Var

[
Ui

Vi

]
=

[
σ2
U σUV

σUV σ2
V

]
=

[
σ2
ε + α2σ2

V ασ2
V

ασ2
V σ2

V

]
. (14)

Notice that knowledge of Σ immediately implies knowledge of α via the simple transformation

Cov(U, V )

Var(V )
=
σUV
σ2
V

=
ασ2

V

σ2
V

= α. (15)

The relationship in (15) suggests the following approach to estimation and inference for α.

Algorithm 1 (Bayesian Double Machine Learning).

1. Place priors on (δ, γ,Σ) in the reduced form model given by (13).

2. Sample from the joint posterior (δ, γ,Σ)|(X,D, Y ) where Σ is defined in (14).

3. Transform the posterior draws for Σ to obtain a posterior for α = σUV /σ
2
V .

The procedure given in Algorithm 1 is simple, flexible, and fully Bayesian. At the same

time, it allows us to avoid the problem of inadvertently specifying a dogmatic prior on

selection bias, pointed out by Linero (2023) and explained in section 3 above. First, because

we work with a pair of reduced form regressions rather than a structural regression for Yi and

a reduced form regression for Di, our likelihood does not factorize: (Ui, Vi) are correlated

whereas (εi, Vi) are not. Second, because δ = (αγ + β), placing independent priors on

the reduced form regression coefficients δ and γ does not imply independent priors for β

and γ. Hence, (13) in general satisfies neither of the two conditions required for Bayesian-

ignorability introduced by Linero (2023). Naturally, the properties of point and interval

estimates based on Algorithm 1 will depend on the specific choice of priors for (δ, γ,Σ). We

explore this point in detail below and and compare the theoretical and practical performance

of different priors. The key insight of our approach, however, is that re-writing the model

from (4)–(6) in the form given by (13) allows us to side-step the problem of RIC using a

standard Bayesian multivariate regression model with conditionally conjugate priors. As far

as we are aware, this observation is new to the literature.
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Because the estimator α̂λ from (8) can be viewed from a Frequentist perspective as an

instance of Ridge Regression, (9)–(10) imply that RIC is just as much of a challenge for

frequentists who apply machine learning methods to high-dimensional causal inference prob-

lems as it is for Bayesians. The increasing recognition of this problem over the past decade

has led to the development of a framework called (frequentist) double machine learning

(FDML). See Chernozhukov et al. (2018) for an overview. The simplest FDML approach to

estimating α in (4) proceeds by running three regressions. First, let δ̂ML be the estimated

coefficient vector from some unspecified “machine learning” (i.e. regularized) regression of Yi

on Xi, e.g. ridge regression, LASSO, random forests, etc. Second, let γ̂ML be the estimated

coefficient vector from some unspecified regularized regression of Di on Xi. The FDML

estimator is then obtained by regressing the residuals from the Yi on Xi regression on the

residuals from the D on X regression, in other words

α̂FDML =

∑n
i=1(Yi −X ′

i δ̂ML)(Di −X ′
iγ̂ML)∑n

i=1(Di −X ′
iγ̂ML)2

. (16)

Like (13) from above, (16) involves reduced form regressions of Y and D on Xi. Because of

this similarity, we refer to the approach from Algorithm 1 as Bayesian Double Machine

Learning (BDML). From a Bayesian perspective, BDML provides a way to guard against

RIC while using a fully generative model and conducting inference in a manner that respects

the likelihood principle. This gives researchers access to the full arsenal of Bayesian tools,

from hierarchical modeling to posterior predictive checks. But even for researchers who are

primarily concerned with frequentist performance, BDML offers two key advantages. First,

it allows practitioners to incorporate subject matter expertise into estimation through the

choice of prior, potentially yielding sizeable efficiency gains in small samples. To show how

this can be achieved in practice, we propose a simple and effective way of incorporating

researcher beliefs concerning the R-squared of the reduced form regressions, building on the

so-called “R2D2” prior of (Zhang et al., 2022). Second, rather than simply “plugging in”

point estimates of δ and γ, as in FDML, our BDML approach marginalizes over these high-

dimensional parameters, correctly accounting for all sources of estimation uncertainty for α.

As such, BDML may provide more accurate frequentist inference while avoiding the need

for cumbersome and computationally-expensive “cross-fitting” procedures, as are commonly

employed in applications of FDML.

While ours is not the only Bayesian proposal for avoiding RIC in a model like (10),

BDML differs in important ways from existing methods. The two closest to our approach

are the methods of Hahn et al. (2018, 2020) on the one hand and Linero (2023), on the other

hand. Both begin with a preliminary Bayesian linear regression of Di on Xi to yield a Bayes
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estimator of γ that is then substituted into a second Bayesian regression.7 The approaches

differ in the precise regression model that they estimate in the second step. Hahn et al. (2018)

rely on the same substitution as our (12) but, rather than absorbing αVi into a reduced form

error term, replace it with its point estimate V̂i based on a first-step regression.

Algorithm 2 (HCPH). Obtain the marginal posterior for α from the linear regression

Yi = αV̂i +X ′
iδ2 + νi, V̂i ≡ (Di −X ′

iγ̂)

where γ̂ is a first-step Bayes-estimator of γ from (5).

Note that the parameter δ2 = δ + αγ̂ from Algorithm 2 does not in general coincide

with our δ from (12). Linero (2023) generalizes the second-stage regression from Hahn et al.

(2018). Defining D̂i ≡ X ′
iγ̂, we can re-express the regression from Algorithm 2 as

Yi = αDi − αD̂i +X ′
iδ2 + νi.

Linero (2023) estimates the parameters of this regression without the restriction that the

coefficient on D̂i equals the negative of the coefficient on D̂i.

Algorithm 3 (Linero). Obtain the marginal posterior for α from the linear regression

Yi = αDi + κD̂i +X ′
iδ3 + νi, D̂i ≡ X ′

iγ̂

where γ̂ is a first-step Bayes-estimator of γ from (5).

Notice that the regression from Algorithm 3 has an identification problem: D̂i = Xiγ̂

is perfectly collinear with Xi. We write δ3 as the vector of regression coefficients for Xi to

emphasize that, when estimated without the restriction that κ = −α, this procedure will not
coincide with Algorithm 2.

Compared to the procedures in Algorithms 2–3, our BDML approach differs in two im-

portant ways. First, our inferences for α incorporate posterior uncertainty over both γ and δ.

Hahn et al. (2020) argue that, since Bayesian inference in a regression model conditions on

the realizations of the regressors, a two-step approach can be viewed as fully-Bayesian: any

Bayes-estimator of γ from the first-step regression is necessarily a measurable function of

(D,X), so plugging this estimate into a second-step regression does not violate the likelihood

principle. We agree with this argument, as far as it goes. But there are countless approaches

7While Hahn et al. (2018) takes a more involved joint estimation approach, their followup paper Hahn
et al. (2020) advocates the simpler two-step approach that we describe here.
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that adhere to the likelihood principle, all of which yield different posteriors. As we show

in our simulations below, accounting for uncertainty in γ̂ is crucial for obtaining inferences

that have good frequentist properties in addition to a sound Bayesian justification. Second,

by residualizing both Di and Yi with respect to Xi, BDML achieves robustness properties

similar to those of frequentist double machine learning in a fully-Bayesian model. In contrast

Hahn et al. (2018) residualizes only Di. Alluding to similar robustness concerns raised by

Zigler (2016), Linero (2023) suggests that his two-step approach could give added robustness

when either (4) or (5) may be misspecified by eliminating “feedback” from the estimation

problem. As we show below, however, our approach performs well in practice even in the

simulation designs from Linero (2023). This is because our approach, like FDML, is “double

de-biased” where as Algorithms 2–3 are only “single de-biased”, a point we expand upon

below.

5 Asymptotic Properties

5.1 Assumptions

We now explore the large-sample properties of the BDML approach from Algorithm 1 and

contrast them with those of the frequentist alternative, FDML, as well as those of a “näıve”

Bayesian approach analogous to the Ridge Regression estimator from (8). We first introduce

some notation. Let X be the (n× p) matrix of control regressors from above and define the

(n× 2) matrix of “outcomes” W , the (p× 2) matrix of coefficients B, and the (n× 2) matrix

of errors E according to

W ≡
[
Y D

]
, B ≡

[
δ γ

]
, E ≡

[
U V

]
(17)

where E ′
i ≡ (Ui, Vi) denotes a specified row of E. Then, we can express the reduced form

regression model from (13) in matrix form as

W = XB + E, Ei|X ∼ iid Normal2(0,Σ). (18)

We consider an asymptotic sequence in which the number of control regressors p grows with

sample size n and the true parameter values are fixed. We write these fixed true values as Σ∗

and B∗ ≡
[
δ∗ γ∗

]
to distinguish them from the random variables Σ and B that represent

prior (or posterior) uncertainty in a Bayesian model. Analogously, when we have occasion to

refer to the true values of the structural parameters from (4), we write them as (α∗, β∗σ∗
ε).

Both for simplicity and to underscore the fact that BDML does not require the researcher
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to specify unusual or elaborate priors, we work with the classic conditionally conjugate prior

for seemingly unrelated regression (SUR) models.8 In particular, we combine (18) with the

prior π(Σ, B) = π(Σ)π(δ)π(γ) where

Σ ∼ Inverse-Wishart(ν0,Σ0), δ ∼ Normalp(0, Ip/τδ), γ ∼ Normalp(0, Ip/τγ) (19)

and (τδ, τγ) denote the prior precisions for the reduced-form parameters δ and γ.9 For

purposes of comparison, we also consider a näıve Bayesian estimator given by the Ridge

Regression estimator from (8). This approximation treats the error variance σ2
ε as a known

constant and imposes the prior β ∼ Normalp(0, Ip/τβ), where λ = τβσ
2
ε

Equation 19 describes the Bayesian model we study. We now describe the assumptions

that we place on the true data-generating process. For ease of notation, we state these

in terms of the reduced form model. Combining these assumptions with (4)–(5) implies

closely related assumptions for the structural model. The causal structure, in turn, gives

a meaningful causal interpretation to α = σUV /σ
2
V . We first assume that the researcher

observes a sample of n iid observations from the reduced form model.

Assumption 2 (Random Sampling). The random variables {(Xi, Ei)}ni=1 are iid across i

and Wi = (Yi, Di) is generated according to (18) with true parameters B∗ and Σ∗.

While Assumption 2 imposes normality of the errors Ei, as we explain further below this

assumption turns out to be innocuous. Our next assumption concerns the true reduced form

parameters Σ∗ and (δ∗, γ∗). As mentioned above, we consider an asymptotic sequence in

which the number of control regressors, p, grows with sample size. This implies that the

dimensions of δ and γ likewise grow. To accommodate this, we consider δ∗ and γ∗ to be

square-summable infinite sequences of parameters, i.e. elements of the sequence space ℓ2(N).

In finite samples only the first p elements of each are “active”, but as we obtain more control

regressors, the number of regression coefficients increases to match. Our assumption ensures

that these coefficients do not “explode” as the number of regressors increases. Intuitively,

each additional control matters “less on average” the more that we include in our model.

Because the dimension of Σ∗ does not change with sample size, we need only assume that

this variance-covariance matrix is well-behaved.

Assumption 3 (True Reduced Form Parameters).

(i) Σ∗ ≡ Var(Ei) is finite and positive definite.

8See Zellner (1971) section 8.5 for a textbook treatment.
9As we explain further below, our use of a normal likelihood for Ei is innocuous.
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(ii) ∥δ∗∥2 and ∥γ∗∥2 are bounded as p→ ∞

Our next assumption concerns the control regressors Xi. For simplicity, and without loss

of generality, we assume that Xi has been centered around its mean. To make it easier to

compare our BDML procedure against its frequentist cousin, we further assume that there

are more observations than controls: p < n. The remaining conditions we impose on Xi

restrict the variances and covariances of the control regressors as p grows. To state them,

let ΣX ≡ Var(Xi) and λj(ΣX) be the j-th eigenvalue of ΣX , where these values are arranged

in descending order. Further let Fp(t) ≡ 1
p

∑p
j=1 1 {λj(ΣX) ≤ t} be the empirical spectral

distribution of ΣX .

Assumption 4 (Control Regressors).

(i) E(Xi) = 0, without loss of generality, and p < n.

(ii) ΣX ≡ Var(Xi) is finite and positive definite for any p

(iii) The empirical spectral distribution Fp(t) ≡ 1
p

∑p
j=1 1 {λj(ΣX) ≤ t} converges to a limit

distribution F (t) supported on (0,∞) for all continuity points of F as p→ ∞.

(iv) 1
p

∑p
j=1 [λj(ΣX)]

m → µ(m) <∞ as p→ ∞ for m = −1, 2, 2 and 2 + η for some η > 0.

Parts (iii) and (iv) of Assumption 4 ensure that the spectrum of ΣX remains “well-

behaved” as the dimension of Xi grows. The final ingredient of our asymptotic framework

is an assumption about the relative rates of n, p, and the prior precisions. To state it we

use the notation an ≍ bn to indicate that two sequences are “of the same order”, i.e. that

an = O(bn) and bn = O(an).

Assumption 5 (Rate Restrictions).

(i) p = o(n)

(ii) τδ, τγ, λ = o(n)

(iii) τδ, τγ, λ ≍ p

Part (i) of Assumption 5 states that the sample size dominates the number of controls

and is the asymptotic equivalent of p < n from Assumption 4 (i) above.10 Since p → ∞,

this means that there are many controls but not so many that they overwhelm the available

data. Part (ii) of Assumption 5 states that the sample size dominates each of the prior

10Formally Assumption 5 (i) is redundant given (ii) and (iii), but we state it explicitly to emphasize a key
feature of our asymptotic framework.
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precisions. Intuitively, this means that the priors are only “weakly informative” in the sense

that they will be dominated by the data in large samples. Along this asymptotic sequence,

the shrinkage bias of the Ridge estimator from (8) vanishes in the limit. An o(n) rate for the

prior precisions also accords with the typical assumption from the frequentist literature on

double machine learning. Finally, part (iii) asserts that the prior precisions are of the same

order as the number of controls. This means that our prior imposes more shrinkage when

there are more controls. Taken together, assumptions Assumption 2–Assumption 5 implied

that, under the prior from (19), the implied R-squared values from the regressions of D on

X and Y on X remain well-behaved in the limit: they do not diverge to zero or one. See

Proposition A.1 in the Appendix for details.

5.2 Prior Properties

Our BDML approach places priors on the reduced form coefficients (Σ, B). We now consider

the prior that (19) implies for other quantities of interest. We begin with the causal effect of

interest, α. Partition Σ into blocks Σ11,Σ12 and Σ22 and likewise partition Σ0 into Σ0,11 and

so on. Then α = Σ12/Σ22. Under (19), our prior for α follows a location-scale t-distribution.

Lemma 1 (Induced prior on α). Under (18) and (19), the induced marginal prior on α is

a location-scale t-distribution, in other words

α ∼ Σ0,12

Σ0,22

+
|Σ0|1/2√
ν0Σ0,22

tν0 ,

where tν0 denotes a Student-t random variable with ν0 degrees of freedom.

If the prior scale matrix Σ0 is diagonal, as is typical in practice, then Σ0,12/Σ0,22 = 0 so

the implied prior for α is symmetric around zero. Choosing a small value for ν0 gives this

prior heavy tails, making it compatible with both very large positive and negative values for

the effect of interest. This is reassuring: although we have placed a prior on the reduced

form rather than the structural model, we can easily avoid imposing unintentionally strong

prior beliefs on α by making Σ0 diagonal.

We now consider the implied prior for a different but equally important quantity, namely

the selection bias. This idea is most easily explained in the case where Di is binary. For the

general version, see Propositions A.2–A.3 in the Appendix. Following the usual convention

in applied microeconomics, we define the selection bias as the difference between the quantity

identified by a simple comparison of mean outcomes, treated minus untreated, and the true
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causal effect. Under (4), this becomes

SB ≡ [E(Yi|Di = 1)−E(Yi|Di = 0)]− α = [E(Xi|Di = 1)−E(Xi|Di = 0)′] β.

As mentioned in section 3 above, Linero (2023) shows that any model that factorizes as

in (11) and in which and β and γ are a priori independent implies a highly dogmatic prior

for the extent of selection bias when p is large. This is another lens through which to view

RIC: it arises from “accidentally” imposing a strong prior belief that there is little or no

selection bias. The following result shows that the näıve estimator suffers from this problem

whereas our BDML estimator does not.

Proposition 2 (Selection bias: näıve estimator vs BDML). Suppose that Assumptions 2–5

hold. Then, as n, p→ ∞ the naive (Ridge) prior implies

SBnaive =
γ′ΣXβ

Σ22 + γ′ΣXγ

p→ 0,

whereas the prior from (19) implies

SBBDML
p→ Σ12

Σ22 + γ′ΣXγ
.

When n and p are large, the näıve approach in effect assumes away selection bias : it

implies a prior that is concentrated in a small neighborhood around zero. But if there is no

selection bias, then there is no need to adjust for Xi in the first place: it is as if Di had been

randomly assigned! Intuitively, in high-dimensional spaces randomly chosen vectors tend to

be nearly orthogonal to each other. Since ΣX is positive definite, the numerator γ′ΣXβ from

SBnaive converges in probability to zero. In contrast, the numerator of SBBDML is Σ12, which

has a proper prior that is unaffected by the sample size or the number of control regressors.

This is a clear advantage of working with the reduced form: stating a prior in which δ and

γ are independent is innocuous because the implied prior for δ and β = δ − αγ are not

independent.

5.3 Posterior Properties

Let β∗ = δ∗−α∗γ∗. We have the following result on the posterior mean of α under the näıve

estimator.

Proposition 3 (Posterior mean: näıve estimator). Assume that the model and prior are as
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above. Suppose that Assumptions 2–4 hold. Then, the posterior mean of α is given by

α̂naive = α∗ +
λ

n

γ∗′β∗

Σ∗
22

+ o
(p
n

)
+Op

(
1√
n

)
,

where the Op(1/
√
n) term is mean zero. Therefore, the naive estimator is consistent, but not

√
n-consistent for limn→∞ p2/n = ∞ and γ∗′β∗ ̸= 0.

Note that a similar (in)consistency argument can be established for the cases with λ, p ≍
n, as (A.4) still holds.

Conditional posterior Note that by Assumption 3, the true Σ∗ is finite and positive

definite, so Σ−1 is also finite and positive definite in the limit, almost surely in the posterior.

Also by Assumption 4, ΣX is finite with a positive proportion of positive eigenvalues. If X ′X

does not have full rank, its inverse is given by the Moore-Penrose pseudoinverse.

The conditional posterior of B given Σ is

p(vec(B) | X,W,Σ) ∝ exp

(
−1

2
vec(B −Bn)

′V −1
n vec(B −Bn)

)
,

where

Vn =
[
Σ−1 ⊗X ′X + V −1

0

]−1
,

vec(Bn) = Vn

[(
Σ−1 ⊗X ′X

)
vec(B̂) + V −1

0 vec(B0)
]
,

and B̂ = [δ̂, γ̂] = (X ′X)−1X ′W is the OLS estimator of B. And the conditional posterior of

Σ given B is

Σ | X,W,B ∼ Inverse-Wishart (νn, Σn) ,

where

νn = ν0 + n,

Σn = Σ0 + (W −XB)′(W −XB).

Below, for notation simplicity, let B0 = 0.

Remark 1 (Posterior: BDML, finite sample). We cannot derive the exact posterior distri-

bution of α in the finite sample case, as there is no closed form for the marginal posterior

distribution of Σ. However, we can derive the posterior of α in the limit.
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Proposition 4 (Marginal posterior distribution of Σ). Assume that the model and prior are

as above. Suppose that Assumptions 2–5 hold. We can approximate the marginal posterior

of Σ as

p(Σ|X,W ) ∝ |Σ|−(ν̃n+3)/2 exp

(
−1

2
tr(Σ̃nΣ

−1)

)
exp

(
1

2
tr(C̃nΣ)

)
(1 + op(1)),

where

ν̃n = ν0 + n− p,

Σ̃n = Σ0 + (W −XB̂)′(W −XB̂),

C̃n =

[
τ 2δ δ̂

′(X ′X)−1δ̂ − τδtr ((X
′X)−1) τδτγ δ̂

′(X ′X)−1γ̂

τδτγ γ̂
′(X ′X)−1δ̂ τ 2γ γ̂

′(X ′X)−1γ̂ − τγtr ((X
′X)−1)

]
.

Remark 2 (Intuition on the posterior of Σ). The exp
(

1
2
tr(C̃nΣ)

)
term introduces exponential

tilting to the Inverse-Wishart distribution. To visualize this effect, we could think of the

tilting as “pulling” the distribution of Σ in the direction of matrices that have a structure

similar to C̃n (or −C̃−1
n ), if C̃n is positive (or negative) definite.11

As n→ ∞, τδ, τγ = o(n), C̃n = o(n), and Σ̃n = O(n) so the IW part would dominate the

tilting part.

Proposition 5 (Posterior mean: BDML). Assume that the model and prior are as above.

Suppose that Assumptions 2–5 hold. The posterior mean of α|X,W under the BDML esti-

mator is given by

α̂BDML = E[α|X,W ]

= α∗ +
α∗

n

(
Σ0,12 + (Σ∗C∗Σ∗)12

Σ∗
12

− Σ0,22 + (Σ∗C∗Σ∗)22
Σ∗

22

)
+ op

(
1

n

)
+ op

((p
n

)2)
+Op

(
1√
n

)
,

where

C∗ =
1

n

[
τ 2δ δ

∗′Σ−1
X δ∗ − τδtr

(
Σ−1
X

)
τδτγδ

∗′Σ−1
X γ∗

τδτγγ
∗′Σ−1

X δ∗ τ 2γγ
∗′Σ−1

X γ∗ − τγtr
(
Σ−1
X

)] ,
and the Op

(
1√
n

)
term is mean zero. Therefore, α̂BDML is consistent. Moreover, if p =

o(n3/4), α̂BDML is
√
n-consistent.

11If C̃n is negative definite, then X follows a multivariate Generalized Inverse Gaussian distribution.
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Remark 3 (BDML vs. näıve estimator). Compared with Proposition 3 for the näıve estimator,

we see that when p is between the order of n1/2 and n3/4, the BDML estimator is
√
n-

consistent, while the näıve estimator is not; this is in line with the argument for FDML

in Chernozhukov et al. (2018, EctJ). In other words, BDML and FDML have bias of order

p2/n2 compared to p/n for Näıve.

Remark 4 (BDML vs. FDML). For the frequentist DML based on ridge, for the first stage

with τδ, τγ = o(n),

vec(B̂FDML − B̂) = −Vn,FDMLV
−1
0 vec(B̂),

where

Vn,FDML =

[
[(X ′X)−1 + τδI]

−1 0

0 [(X ′X)−1 + τγI]
−1

]
= I ⊗ (X ′X)−1(1 + op(1)).

Then,

B̂FDML − B̂ = −(X ′X)−1[τδ δ̂, τγ γ̂](1 + op(1)).

The sample covariance matrix of the residues after the first stage is

(W −XB̂FDML)
′(W −XB̂FDML)/n = Σ̄ + (B̂FDML − B̂)′(X ′X)(B̂FDML − B̂)

= Σ̄ + C̃n,2/n(1 + op(1)),

where

Σ̄ = (W −XB̂)′(W −XB̂),

C̃n,2 =

[
τ 2δ δ̂

′(X ′X)−1δ̂ τδτγ δ̂
′(X ′X)−1γ̂

τδτγ γ̂
′(X ′X)−1δ̂ τ 2γ γ̂

′(X ′X)−1γ̂

]
,

Then,

α̂FDML =
Σ̄12 + C̃n,2,12/n(1 + op(1))

Σ̄22 + C̃n,2,22/n(1 + op(1))

= α∗ +
α∗

n

(
(C∗

2)12
Σ∗

12

− (C∗
2)22
Σ∗

22

)
+ op

(
1

n

)
+ op

((p
n

)2)
+Op

(
1√
n

)
,
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where C̃n,2 = C∗
2(1 + op(1)) with

C∗
2 =

1

n

[
τ 2δ δ

∗′Σ−1
X δ∗ τδτγδ

∗′Σ−1
X γ∗

τδτγγ
∗′Σ−1

X δ∗ τ 2γγ
∗′Σ−1

X γ∗

]
,

and the Op

(
1√
n

)
term is mean zero.

Comparing with the BDML case in Proposition 5, the formula takes a similar form.

Note that C∗
2 = O(p2/n), so the FDML estimator is also consistent, and

√
n-consistent if

p = o(n3/4). The higher order differences being

• BDML has an extra Σ0/n term from the prior of the error covariance.

• FDML incorporates C∗
2 , which is the second component of the tilting term in the

BDML case in (A.9). BDML has an extra first component of the tilting term in (A.7),

coming from the first order approximation of |Vn|1/2.

• In addition, the last term in BDML is based on Σ∗C∗Σ∗. While the variance terms in

Σ∗ can be absorbed into τδ and τγ, the correlation is not captured in FDML.

For the bias-variance trade-off, note that the variance of the posterior mean is not the

same as the posterior variance. As we only have posterior variance for the BDML estimator,

below we focus on deriving and comparing the variance of the posterior mean.

Proposition 6 (Variances of α̂). Assume that the model and prior are as above. Suppose

that Assumptions 2–5 hold. The asymptotic variance of α̂naive, α̂BDML and α̂FDML are the

same, and are given by
Σ∗

11Σ
∗
22 − (Σ∗

12)
2

(Σ∗
22)

2
.

Remark 5 (Comparison of variances). The variances of α̂BDML, α̂FDML, and α̂naive are the

same. This is because the variances of the error terms are the same, which is the dominating

term in the variance of α̂. Therefore, to minimize MSE, we would focus on the bias of the

estimators, where the BDML and FDML estimators are
√
n-consistent in more general cases.

5.4 Bernstein–von Mises theorem

Under the assumption that σ2∗
ε and σ2∗

V are known, we can resort to Walker (2024) by

verifying his assumptions in our high dimensional regression setup.

Remark 6 (Advantages of BDML: BvM). The procedure is semiparametrically efficient in

that it is adaptive, incurring no cost from not knowing the nuisance parameters. It avoids the
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need for prior invariance and does not require strict smoothness conditions on the propensity

score.

In addition, the method is robust due to its use of a Gaussian profile likelihood; it only

requires the mean restriction—similar to ordinary least squares. This property ensures that

Bayesian credible intervals remain efficient even under model misspecification.

Let P ∗ denote the probability measure based on the true DGP, and ∥ · ∥TV denote the

total variation distance.

Proposition 7 (Bernstein–von Mises theorem: known σ2∗
ε and σ2∗

V ). Assume that the model

and prior are as above, except that σ2∗
ε and σ2∗

V are known, the prior for α is continuous and

positive over a neighborhood of α∗, and α∗ is in the interior of its support. Suppose that

Assumptions 2–5 hold. Further suppose that Xi is sub-Gaussian, and the eigenvalues of ΣX

is uniformly bounded by [λX , λ̄X ] with 0 < λX ≤ λ̄X < ∞, p = o (
√
n), and log n = o(p1/2).

Then, as n→ ∞,∥∥∥∥∥P (α ∈ ·|X,W )− Normal

(
α∗ +

∆̃∗
n√
n
,
1

n
In(γ

∗)−1

)∥∥∥∥∥
TV

P ∗
→ 0,

where Ĩn(γ) =
1
n

∑n
i=1

(Di−X′
iγ)

2

σ2∗
ε

and ∆̃∗
n = Ĩn(γ

∗)−1 1√
n

∑n
i=1

[Yi−α∗(Di−X′
iγ

∗)−X′
iδ

∗](Di−X′
iγ

∗)

σ2∗
ε

.

Remark 7 (BvM: empirical L2-norm). Here I consider the empirical L2-norm in the definition

of the shrinking neighborhood of m0 to accommodate our linear setup with unbounded Xi.

Specifically, for generic functions f and g, the empirical L2 inner product is defined as

⟨f, g⟩n,2 = 1
n

∑n
i=1 f(Xi)g(Xi), and the empirical L2-norm is ∥f∥n =

√
⟨f, f⟩n,2. Then, the

neighborhood of m0 based on the empirical L2-norm is defined as

BM,n,2(m
∗, ν) = {m ∈ M : ∥m−m∗∥n,2 ≤ ν},

which is different from BM,∞(m∗, ν) in Walker (2024) for the sup-norm. All proofs in Walker

(2024) can be adapted to the empirical L2-norm: see also the last sentence on page 8 in

Walker (2024).

Remark 8 (BvM: alternative conditions). One stronger alternative condition is that the

eigenvalues of X ′X/n are bounded away from zero and infinity, so we don’t need matrix

Bernstein and Kn = Rp below.

Another alternative condition is that Xi is bounded, i.e., for some constant MX > 0,

max1≤j≤p |Xi,j| ≤MX . This is necessary for the sup-norm case, but incurs another
√
p term

in νn, and only allows for p = o(n1/4).
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For a generic matrix S, define the Orlicz ψ1 norm as

∥S∥ψ1 = inf

{
s > 0 : E exp

(
∥S∥
s

)
≤ 2

}
,

where ∥ · ∥ is the spectral norm. Note that ∥S∥ψ1 is finite if and only if S is sub-exponential.

Then, the matrix Bernstein inequality is as follows.

Lemma 2 (Matrix Bernstein). Let S1, . . . , Sn be i.i.d., mean-zero, symmetric random ma-

trices in Rp×p, satisfying that ∥Si∥ψ1 ≤MS for all i. Then, for any ϵ ≥ 0,

P

{∥∥∥∥∥
n∑
i=1

Si

∥∥∥∥∥ ≥ ϵ

}
≤ 2p · exp

(
−c ·min

(
ϵ2

nM2
S

,
ϵ

MS

))
,

where c > 0 is an absolute constant.

Corollary 1 (Eigenvalue bounds). Suppose that Xi is sub-gaussian and i.i.d., and the eigen-

values of ΣX is uniformly bounded by [λX , λ̄X ] with 0 < λX ≤ λ̄X <∞. Define event

Kn =

{
X ∈ Rn×p : λmin

(
X ′X

n

)
≥ λX

2
and λmax

(
X ′X

n

)
≤ 2λ̄X

}
.

Then, P (Kn)
p→ 1 and P (Kc

n) = O(p−1), as n→ ∞.

6 Simulation Study

We now compare our proposed BDML to a number of alternatives from the literature in a

simulation experiment adapted from Linero (2023). In each replication we generate

{Xi}ni=1 ∼ iid Normalp(0, Ip)

{(εi, Vi)′}ni=1 | X ∼ iid Normal

([
0

0

]
,

[
σ2
ε 0

0 1

])
β | (X, ε, V ) ∼ Normalp

(
µβ, σ

2
βIp

)
.

(20)

We then construct (Di, Yi) according to (4)–(5) above. This design generates new control

regressors X and a new parameter vector β in each replication but holds γ and α constant

across replications. Following the “fixed” design from Linero (2023), we vary σε over a grid

of values from 1 to 4 and set

α = 2, γ = ιp/
√
p, µβ = −γ/2, σ2

β = 1/p, n = 200, p = 100 (21)
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where ιp denotes a p-vector of ones.

We consider three groups of estimators. The first group includes two alternative versions

of the procedure from Algorithm 1, corresponding to alternative prior structures for (γ, δ).

Both of our BDML approaches place a flat prior on α and construct a weakly informative

prior for Σ by placing an LKJ(4) prior on the correlation matrix for (U, V ) and independent

Cauchy(0, 2.5) priors on both σU and σV . The first of our BDML approaches, BDML-Basic,

places independent Normal(0, 52) on the elements of δ and γ. The second, BDML-Hier,

allows different standard deviations in the normal shrinkage priors for δ and γ. We achieve

this via a hierarchical prior that places independent Inverse-Gamma(2, 2) hyper-priors on σ2
δ

and σ2
γ.

12 We sample from the posteriors for both BDML approaches via Hamiltonian Monte

Carlo (HMC), using the no-U-turn (NUTS) sampler as implemented in the Stan probabilistic

programming language.

The second group of estimators we consider contains Bayesian competitors to our BDML

approach. This group includes three estimators. The first two, HCPH and Linero, cor-

respond to the proposals from Hahn et al. (2018) and Linero (2023) detailed in Algorithms

2–3 above and rely on a first-stage regression of D on X. The third, Näıve, estimates a

single-equation linear regression model including (4) only and is a fully-Bayesian variant of

the ridge regression approach described in section 3 above. We carry out posterior sampling

for these three approaches exactly as in Linero (2023). In particular, we rely on the Gibbs

sampler implemented in the BLR() function from the R package BLR for Bayesian linear

regression. Again following Linero (2023) we place a flat prior on α across all three ap-

proaches and on κ from Algorithm 3 and a Jeffreys prior on all error variances. We likewise

place default “ridge priors” on the coefficients on X across all regressions in both stages:

independent Normal(0, σ2) priors on each coefficient and a Jeffreys prior on σ2.13

The third and final group of estimators contains frequentist DML competitors to our

BDML approach. Both of the approaches in this group estimate α via (16) where the

“first-step” estimators γ̂ and δ̂ are constructed via ridge regression.14 We carry out ridge

regression by computing the posterior mean from draws produced using BLR() with the

default parameter values, as explained above. We consider two versions of this FDML

approach: “full-sample” FDML-Full and “split-sample” FDML-Split. FDML-Full uses

the full dataset for both estimation stages whereas FDML-Split randomly splits the sample

partitions the sample into two halves, the first of which is used to estimate (δ̂ML, γ̂ML) and

12This is equivalent to placing independent Student-t(4) distributions on each of the coefficients δj and γj .
13The resulting prior for the coefficients on X is improper and sharply peaked at zero.
14We use ridge rather than LASSO for these preliminary DML regressions because recent work by Kolesár

et al. (2025) and Shen and Xiu (2024) suggests that the “double-LASSO” approach (Belloni et al., 2014)
perform poorly due to its fragility in variable selection.
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the second of which is used to residualize (Y,D) and estimate α.

For each of the seven estimators of α described above, we compute the root mean-

squared error (RMSE), along with the frequentist coverage probability and average width

of a corresponding (nominal) 95% confidence interval. For the five Bayesian procedures,

interval estimates are constructed as equal-tailed 95% posterior credible intervals. For the

two frequentist DML procedures, confidence intervals are constructed based on the usual

OLS interval for the regression of the residualized Y on the residualized D, following the

approach suggested by Belloni et al. (2014) and often used in empirical research. Results

based on 200 simulation replications from the data-generating process given in (20)–(21)

appear in Table 1 and Figure 1. Coverage probabilities are very poor for all methods except

BDML-Basic, BDML-Hier, and Linero. All three of these approaches produce coverage

probabilities close to the nominal 95% level, but BDML-Hier is closest. From panel 1b

of Figure 1, we also see that BDML-Hier produces the shortest average intervals among

the three methods with approximately correct coverage. This holds across all values of

σε in our simulation. Turning our attention to RMSE, the three best-performing methods

remain BDML-basic, BDML-Hier, and Linero. Once again from panel 1b of Figure 1, we

see that BDML-Hier performs best. The fact that BDML out-peforms Linero in this setting

is particularly encouraging given that this simulation design was taken directly from Linero

(2023) and favors Algorithm 3.
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Figure 1: This figure presents results for the estimators described in section 6 and simulation
from (20)–(21) over a grid of values for σε, the error variance in the structural equation given in
(4). The panel labled RMSE gives the root mean-squared error of the estimator for α under each
method, while those labled Coverage and Avg. Width give the coverage probability and average
width of corresponding (nominal) 95% confidence intervals. Panel 1a plots results on a scale such
that all seven approaches are visible; panel 1b zooms in to more clearly show the differences in
performance betwen the three best estimators. Results are based on 200 simulation replications.
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Method σε n p Coverage RMSE Avg. Width
BDML-Hier 1 200 100 0.94 0.09 0.36
BDML-Hier 2 200 100 0.94 0.18 0.66
BDML-Hier 4 200 100 0.94 0.35 1.28
BDML-Basic 1 200 100 0.93 0.11 0.41
BDML-Basic 2 200 100 0.91 0.22 0.80
BDML-Basic 4 200 100 0.92 0.46 1.54
Linero 1 200 100 0.93 0.10 0.38
Linero 2 200 100 0.93 0.20 0.76
Linero 4 200 100 0.93 0.39 1.49
HCPH 1 200 100 0.65 0.19 0.38
HCPH 2 200 100 0.56 0.39 0.73
HCPH 4 200 100 0.68 0.63 1.37
Näıve 1 200 100 0.49 0.17 0.29
Näıve 2 200 100 0.56 0.26 0.47
Näıve 4 200 100 0.73 0.34 0.83
FDML-Full 1 200 100 0.82 0.13 0.31
FDML-Full 2 200 100 0.69 0.29 0.61
FDML-Full 4 200 100 0.71 0.56 1.27
FDML-Split 1 200 100 0.56 0.22 0.42
FDML-Split 2 200 100 0.79 0.28 0.70
FDML-Split 4 200 100 0.88 0.41 1.29

Table 1: This table presents results for the estimators described in section 6 and simulation from
(20)–(21) over a grid of values for σε, the error variance in the structural equation given in (4).
The column RMSE gives the root mean-squared error of the estimator for α under each method,
while Coverage and Avg. Width give the coverage probability and average width of corresponding
(nominal) 95% confidence intervals. Results are based on 200 simulation replications.
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A Proofs

The following lemma is a preliminary step in the proof of Proposition 1.

Lemma A.1. Define the shorthand

M =

(
M11 M12

M21 M22

)
≡
(
D′D D′X
X ′D X ′X + λIp

)
, M−1 ≡

(
M11 M12

M21 M22

)
and let ρ̂′ ≡ (D′D)−1D′X, ξ̂ ≡ [Ip −D(D′D)−1D′]X and R = ξ̂′ξ̂. Then we have

M12 = −ρ̂′(R + λI)−1 (A.1)

M11 = (D′D)−1 −M12ρ̂ (A.2)(
M11 M12

)(D′D D′X
X ′D X ′X

)
=
[
1 (ρ̂′ +M12R)

]
. (A.3)

Proof of Lemma A.1. By the partitioned matrix inverse formula,

M−1 =

(
M11 M12

M21 M22

)
=

(
M−1

11 +M−1
11 M12S

−1M21M
−1
11 −M−1

11 M12S
−1

−S−1M21M
−1
11 S−1

)
where we define

S ≡M22 −M21M
−1
11 M12.

The preceding expression for M−1 holds so long as M11 and S are invertible. We see that
M11 ≡ D′D is invertible whenever there is variation in the treatment variable while M22 ≡
X ′X + λIp is invertible when λ > 0 although possibly not when λ = 0, since p could be
larger than the sample size. Now, defining PD ≡ D(D′D)−1D′, we have

S =M22 −M21M
−1
11 M12 = (X ′X + λIp)−X ′D(D′D)−1D′X

= X ′ (Ip − PD)X + λIp

= [(Ip − PD)X]′ [(Ip − PD)X] + λIp

= ξ̂′ξ̂ + λIp

= R + λIp

since PD is a projection matrix and (Ip − PD) is its orthogonal complement. Substituting
this simplified expression for S into the expression for M12 from above gives

M12 = −M−1
11 M12S

−1 = −(D′D)−1D′X(R + λIp)
−1 = −ρ̂′(R + λIp)

−1.

Substituting the expression for M12 from the partitioned matrix inverse formula into the
expression for M11

M11 =M−1
11 +M−1

11 M12S
−1M21M

−1
11 =M−1

11 −M12M21M
−1
11 .
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It follows that M11 can be written as

M11 =M−1
11 −M12M21M

−1
11

= (D′D)−1 +M12X ′D(D′D)−1

= (D′D)−1 +M12
[
(D′D)−1D′X

]′
= (D′D)−1 −M12ρ̂.

Now, using this more compact expression for M11, we obtain

[
M11 M12

] [D′D
X ′D

]
=
[
{(D′D)−1 −M12ρ̂} M12

] [D′D
X ′D

]
=
[
(D′D)−1 −M12ρ̂

]
D′D +M12X ′D

= 1−M12ρ̂D′D +M12X ′D

= 1−M12 (X ′D − ρ̂D′D)

= 1−M12

[
X ′D −

{
(D′D)

−1
D′X

}′
D′D

]
= 1−M12

[
X ′D −X ′D (D′D)

−1
D′D

]
= 1−M12 (X ′D −X ′D)

= 1.

Similarly, we have

[
M11 M12

] [D′X
X ′X

]
=
[
{(D′D)−1 −M12ρ̂} M12

] [D′X
X ′X

]
=
[
(D′D−1)−M12ρ̂

]
D′X +M12X ′X

= ρ̂′ −M12ρ̂D′X +M12X ′X

= ρ̂′ +M12 (X ′X − ρ̂D′X)

= ρ̂′ +M12
[
X ′X −X ′D (D′D)

−1
D′X

]
= ρ̂′ +M12 (X ′X −X ′PDX)

= ρ̂′ − ρ̂′ (R + λIp)
−1R

= ρ̂′
[
Ip − (R + λIp)

−1R
]
.

The result follows.

Proof of Proposition 1. Using the shorthand defined in the statement of Lemma A.1,

α̂λ =
[
M11 M12

] [D′

X ′

]
Y =

[
M11 M12

] [D′

X ′

]([
D X

] [α
β

]
+ ϵ

)
.
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Since E[ε|X,D] = 0 it follows that

Bias(α̂λ|X,D) =
[
M11 M12

] [D′D D′X
X ′D X ′X

] [
α
β

]
− α.

Thus, substituting (A.1) and (A.3),

Bias(α̂λ|X,D) =
[
1 (ρ̂′ +M12R)

] [α
β

]
− α = ρ̂′

[
Ip − (R + λIp)

−1R
]
β.

For the variance calculation, since Var(ε|X,D) = σ2
Ip, we obtain

Var (α̂λ|X,D) = Var

{(
M11 M12

)(D′

X ′

)[(
D X

)(α
β

)
+ ϵ

]∣∣∣∣X,D}
= σ2

[
M11 M12

] [D′D D′X
X ′D X ′X

] [
M11 M12

]′
= σ2

[
1 (ρ̂′ +M12ξ̂′ξ̂)

] [(M11)′

(M12)′

]
= σ2

[{
(D′D)−1 −M12ρ̂

}′
+ (ρ̂′ +M12R)(M12)′

]
= σ2

[
(D′D)−1 +M12R(M12)′

]
= σ2

[
(D′D)−1 + ρ̂′(R + λIp)

−1R(R + λIp)
−1ρ̂
]

by substituting Lemma A.1, since R ≡ ξ̂′ξ̂ is symmetric.

Proposition A.1 (Signal-to-noise ratio and R2 of high-dimensional regression). Suppose
that Assumptions 2–5 hold. As p→ ∞, the signal-to-noise ratios of the Y and D regressions
are

SNRY → τ−1
δ p

µ(1)

Σ11

, and SNRD → τ−1
γ p

µ(1)

Σ11

.

And the R2 of the Y and D regressions are

R2
Y → τ−1

δ p

τ−1
δ p+ Σ11/µ(1)

and R2
D →

τ−1
γ p

τ−1
γ p+ Σ22/µ(1)

.

Proof of Proposition A.1. As the two regressions are similar, let us focus on the Y re-
gression. Note that E[Xi] = 0. The prior-induced variance of the signal (per observation)
is

Var(X ′
iδ) = E [X ′

iVar(δ)Xi] = τ−1
δ tr(ΣX) → τ−1

δ pµ(1).

The per-observation noise variance is simply the error variance for the Y equation, which is
Σ11. The signal-noise ratio is then

SNRY → τ−1
δ p

µ(1)

Σ11

.
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Then R2 is the fraction of the total variance that is explained by the signal. For the Y
equation, one can write

R2 =
Signal Variance

Signal Variance + Noise Variance
=

SNRY

SNRY + 1
=

τ−1
δ p

τ−1
δ p+ Σ11/µ(1)

.

Proof of Lemma 1. From the properties of the Inverse-Wishart distribution,

α|Σ11·2 ∼ Normal

(
Σ0,12

Σ0,22

,
Σ11·2

Σ0,22

)
Σ11·2 ∼ Inverse-Gamma

(
ν0
2
,
Σ0,11·2

2

)
.

where Σ11·2 = Σ11−Σ2
12/Σ22 and Σ0,11·2 = Σ0,11−Σ2

0,12/Σ0,22. Thus, the marginal distribution
of α is a location-scale t-distribution:

α ∼ Σ0,12

Σ0,22

+
tν0√

ν0Σ0,22/Σ0,11·2

=
Σ0,12

Σ0,22

+
|Σ0|1/2√
ν0Σ0,22

tν0 .

The following two propositions generalize Proposition 2 from subsection 5.2 to the case
where Di may not be binary. In this setting we work with the confounding bias, defined as
∆(z) = E[Yi|Di = z] − E[Yi(z)], rather than selection bias but the intuition and proofs are
effectively identical.

Proposition A.2 (Confounding bias: näıve estimator). Assume that the model and näıve
estimator are as above. Suppose that Assumptions 2–5 hold. The confounding bias of the
näıve estimator is

√
p∆(z)

d→ Normal

(
0,
λ−1(d(1))2

τ−1
γ d(2)

z2
)
.

Therefore, ∆(z)
p→ 0, if p→ ∞ as n→ ∞, and thus the näıve estimator is dogmatic in the

limit.

Proof of A.2. See Linero (2023) Supplement S.2. Note that

∆(z) = z
γ′ΣXβ

Σ22 + γ′ΣXγ
.

Proposition A.3 (Confounding bias: BDML). Assume that the model and prior are as
above. Suppose that Assumptions 2–5 hold. Then confounding bias of the BDML estimator
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is

∆(z)
p→ Σ12

γ′ΣXγ + Σ22

z,

which is non-dogmatic in the limit.

Proof of Proposition A.3. Note that the confounding bias is defined as ∆(z) = E[Yi|Di =
z]− E[Yi(z)]. For the first term, as E[Xi] = 0,

E[Yi|Di = z] =
Cov(Yi, Di)

Var(Di)
z =

Cov(Xiδ,Xiγ) + Cov(Vi, Ui)

Var(Xiγ) + Var(Vi)
z

=
γ′ΣXδ + Σ12

γ′ΣXγ + Σ22

z
p→ Σ12

γ′ΣXγ + Σ22

z,

where the convergence follows from a similar argument as in Proposition A.2. The distri-
bution of the first term is non-degenerate as Σ ∼ Inverse-Wishart(ν0,Σ0). The second term
equals 0 as D does not directly enter into the Y equation. Combining both terms, we obtain
the distribution of the confounding bias under the BDML estimator, which is non-dogmatic
in the limit.

Proof of Proposition 3. Denote the posterior mean estimator of α as α̂naive. Denote
p/n = r(1 + o(1)). Let

SX = X ′X/n and Sλ = SX + λ/nI.

Recall ΣX = QXΛXQ
′
X and QX is the matrix of eigenvectors of ΣX . For a generic vector θ,

let θQ = Q′
Xθ. By an argument similar to that of Proposition 1,

α̂naive =
D′(In −XS−1

λ X ′/n)Y

D′(In −XS−1
λ X ′/n)D

=
(Xγ∗ + V )′(In −XS−1

λ X ′/n)(α∗D +Xβ∗ + ε)

(Xγ∗ + V )′(In −XS−1
λ X ′/n)(Xγ∗ + V )

= α∗ +
(Xγ∗ + V )′(In −XS−1

λ X ′/n)(Xβ∗ + ε)

(Xγ∗ + V )′(In −XS−1
λ X ′/n)(Xγ∗ + V )

.

For the numerator, note that ∥δ∗∥2 and ∥γ∗∥2 are bounded, and since β∗ = δ∗ − α∗γ∗,
it follows that ∥β∗∥2 is bounded as well. Moreover, the spectral of ΣX converge to a limit
distribution on (0,∞). Therefore, following the argument in Lemma S.2 of Linero (2023),
we have that

V ′(In −XS−1
λ X ′/n)Xβ∗/n, γ∗′X ′(In −XS−1

λ X ′/n)ε/n, V ′(In −XS−1
λ X ′/n)ε/n

are all Op

(
1√
n

)
. There is only one remaining term

γ∗′X ′(In −XS−1
λ X ′/n)Xβ∗/n =

λ

n

p∑
j=1

dj
dj + λ/n

γ∗Q,jβ
∗
Q,j +Op

(
1√
n

)
.

For the denominator, similarly, we have V ′(In − XS−1
λ X ′/n)Xγ∗/n is Op

(
1√
n

)
, and two
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remaining terms

γ∗′X ′(In −XS−1
λ X ′/n)Xγ∗/n =

λ

n

p∑
j=1

dj
dj + λ/n

(γ∗Q,j)
2 +Op

(
1√
n

)
,

V ′(In −XS−1
λ X ′/n)V/n = Σ∗

22

(
λ

n

p∑
j=1

1

dj + λ/n
+ 1− r

)
+Op

(
1√
n

)
.

All Op(1/
√
n) terms are mean zero.

Combining the numerator and denominator, we have

α̂naive − α∗ =

λ
n

∑p
j=1

dj
dj+λ/n

γ∗Q,jβ
∗
Q,j +Op

(
1√
n

)
λ
n

∑p
j=1

dj
dj+λ/n

(γ∗Q,j)
2 + Σ∗

22

(
λ
n

∑p
j=1

1
dj+λ/n

+ 1− r
)
+Op

(
1√
n

) (A.4)

As λ = o(n), and ∥β∗∥2 and ∥γ∗∥2 are bounded,

α̂naive − α∗ =
1

Σ∗
22

λ

n

p∑
j=1

dj
dj + λ/n

γ∗Q,jβ
∗
Q,j +Op

(
1√
n

)
=
λ

n

γ∗′β∗

Σ∗
22

+ o
(p
n

)
+Op

(
1√
n

)
.

where the Op(1/
√
n) term is mean zero, so the näıve estimator is consistent. The last line is

given by the fact that λ ≍ p.

√
n(α̂naive − α∗) =

λ√
n

γ∗′β∗

Σ∗
22

+ o

(
p√
n

)
+Op (1) .

As λ ≍ p, if limn→∞ p2/n = ∞ and γ∗′β∗ ̸= 0, the näıve estimator is not
√
n-consistent.

Proof of Proposition 4. Now, let’s derive the (approximate) marginal posterior distribu-
tion of Σ integrating out B. We begin with the joint posterior of B and Σ:

p(B,Σ|X,W ) ∝ |Σ|−(n+ν0+3)/2 exp

(
−1

2
tr(Σ0Σ

−1)

)
× exp

(
−1

2
tr[(W −XB)′(W −XB)Σ−1]

)
× exp

(
−1

2
vec(B)′V −1

0 vec(B)

)
.
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Integrating out B, we get:

p(Σ|X,W ) ∝ |Σ|−(n+ν0+3)/2|Vn|1/2 exp
(
−1

2
tr
(
(Σ0 +WW ′)Σ−1

))
× exp

(
1

2
vec(Bn)

′V −1
n vec(Bn)

)
.

Based on Assumption 5, τδ, τγ = o(n). Then, for large n, we can approximate Vn:

Vn = (Σ−1 ⊗X ′X + V −1
0 )−1 = Σ⊗ (X ′X)−1(1 + op(1)), (A.5)

Vn = Σ⊗ (X ′X)−1 − (Σ−1 ⊗X ′X)−1V −1
0 (Σ−1 ⊗X ′X)−1(1 + op(1)) (A.6)

where (A.5) and (A.6) give the zeroth and first order approximations, respectively.
First, we approximate |Vn|1/2 using the first order approximation (A.6):

|Vn|1/2 = |Σ⊗ (X ′X)−1|1/2
∣∣I − V −1

0 (Σ⊗ (X ′X)−1)
∣∣1/2 (1 + op(1))

= |Σ|p/2|(X ′X)−1| exp
(
−1

2
tr(V −1

0 (Σ⊗ (X ′X)−1))

)
(1 + op(1))

= |Σ|p/2|(X ′X)−1| exp
(
−1

2
(τδΣ11 + τγΣ22)tr((X

′X)−1)

)
(1 + op(1)),

where the second line is given by the fact that |I −A| ≈ 1− tr(A) ≈ exp(−tr(A)) for small
A. Note that

(τδΣ11 + τγΣ22)tr((X
′X)−1) = tr

([
τδtr((X

′X)−1) 0
0 τγtr((X

′X)−1)

]
Σ

)
. (A.7)

Second, note that

vec(Bn) =
(
I − VnV

−1
0

)
vec(B̂).

Now, let’s expand vec(Bn)
′V −1
n vec(Bn):

vec(Bn)
′V −1
n vec(Bn)

= vec(B̂)′
(
I − VnV

−1
0

)′
V −1
n

(
I − VnV

−1
0

)
vec(B̂)

= vec(B̂)′V −1
n vec(B̂)− 2vec(B̂)′V −1

0 vec(B̂) + vec(B̂)′V −1
0 VnV

−1
0 vec(B̂)

= vec(B̂)′(Σ−1 ⊗X ′X)vec(B̂)− vec(B̂)′V −1
0 vec(B̂)

+ vec(B̂)′V −1
0 (Σ⊗ (X ′X)−1)V −1

0 vec(B̂)(1 + op(1)),

where the last line is by plugging in V −1
n = Σ−1 ⊗X ′X + V −1

0 and the zeroth order approx-
imation of Vn in (A.5). The first term vec(B̂)′(Σ−1 ⊗X ′X)vec(B̂) will be absorbed by the
OLS part in Σ̃n. The second term vec(B̂)′V −1

0 vec(B̂) does not involve Σ. Let B̂V = [τδ δ̂, τγ γ̂].
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Then, vec(B̂V ) = V −1
0 vec(B̂), and the third term

vec(B̂)′V −1
0 (Σ⊗ (X ′X)−1)V −1

0 vec(B̂) = vec(B̂V )
′(Σ⊗ (X ′X)−1)vec(B̂V ) (A.8)

= tr
(
B̂′
V (X

′X)−1B̂VΣ
)
,

where

B̂′
V (X

′X)−1B̂V =

[
τδ δ̂

′

τγ γ̂
′

]
(X ′X)−1

[
τδ δ̂ τγ γ̂

]
(A.9)

=

[
τ 2δ δ̂

′(X ′X)−1δ̂ τδτγ δ̂
′(X ′X)−1γ̂

τδτγ γ̂
′(X ′X)−1δ̂ τ 2γ γ̂

′(X ′X)−1γ̂

]
.

Combining (A.7) and (A.8), we obtain the tilting part in C̃n.

Proof of Proposition 5. First, we approximate the posterior mode (and mean) of Σ by
the fixed-point iteration solution to the Riccati equation. From the FOC, we have the matrix
quadratic equation

ΣC̃nΣ− (ν̃n + 3)Σ + Σ̃n = 0.

Rearranging into fixed-point form

Σ =
Σ̃n

ν̃n + 3
+

ΣC̃nΣ

ν̃n + 3
.

Taking the zeroth-order approximation Σ(0) = Σ̃n/(ν̃n + 3) and performing one Picard iter-
ation, we have

Σ(1) =
Σ̃n

ν̃n + 3
+

1

ν̃n + 3

(
Σ̃n

ν̃n + 3

)
C̃n

(
Σ̃n

ν̃n + 3

)

=
Σ̃n

n
+

Σ̃nC̃nΣ̃n

n3
(1 + op(1)),

where the last line is by the fact that ν̃n + 3 ∼ n.
Note that

Σ̃n

n
=

Σ0

n
+

(W −XB̂)′(W −XB̂)

n

=
Σ0

n
+ Σ∗ − p

n
Σ∗ +Op

(
1√
n

)
,

where the Op

(
1√
n

)
term is mean zero. The first line is by the definition of Σ̃n. The

second line is by the property of sample variance covariance matrix of the OLS residues, i.e.,

E
[
(W −XB̂)′(W −XB̂)/n− p

]
= Σ∗, given p < n and p = o(n) in Assumptions 4 and 5.
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Under Assumptions 2–5, we can also approximate C̃n as

C̃n = C∗(1 + op(1)), where C
∗ ≍ p2/n.

Then, the posterior mode and mean of Σ up to the order of 1/n and (p/n)2 is15

E[Σ|X,W ] = Σ∗ +
1

n
Σ0 −

p

n
Σ∗ +

1

n
Σ∗C∗Σ∗ + op

(
1

n

)
+ op

((p
n

)2)
+Op

(
1√
n

)
,

where the Op

(
1√
n

)
term is mean zero.

Also note that the posterior variance of Σ is of order Op

(
1
n

)
, and Σ∗

22 > 0. Then, the
posterior mean of α is approximately

α̂BDML = E[α|X,W ] =
Σ∗

12 + [Σ0,12 − pΣ∗
12 + (Σ∗C∗Σ∗)12]/n

Σ∗
22 + [Σ0,22 − pΣ∗

22 + (Σ∗C∗Σ∗)22]/n

+ op

(
1

n

)
+ op

((p
n

)2)
+Op

(
1√
n

)
,

where the Op

(
1√
n

)
term is mean zero. Then, we approximate α̂BDML up to the order of 1/n

and (p/n)2. Let

∆ = [Σ0 − pΣ∗ + Σ∗C∗Σ∗]/n,

Then,

Σ∗
12 + [Σ0,12 − pΣ∗

12 + (Σ∗C∗Σ∗)12]/n

Σ∗
22 + [Σ0,22 − pΣ∗

22 + (Σ∗C∗Σ∗)22]/n
=

Σ∗
12 +∆12

Σ∗
22 +∆22

=
Σ∗

12

Σ∗
22

[
1 +

(
∆12

Σ∗
12

− ∆22

Σ∗
22

)(
1− ∆22

Σ∗
22

)]
Note that

∆12

Σ∗
12

− ∆22

Σ∗
22

=
Σ0,12 − pΣ∗

12 + (Σ∗C∗Σ∗)12
nΣ∗

12

− Σ0,22 − pΣ∗
22 + (Σ∗C∗Σ∗)22
nΣ∗

12

=
1

n

(
Σ0,12 + (Σ∗C∗Σ∗)12

Σ∗
12

− Σ0,22 + (Σ∗C∗Σ∗)22
Σ∗

12

)
= O

(
1

n

)
+O

((p
n

)2)
,

15Here we consider (p/n)2 as the p/n order terms will be cancelled out in the approximation for α̂BDML.
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where we cancel out the p/n order terms. As α∗ = Σ∗
12/Σ

∗
22, we have

α̂BDML = α∗ +
α∗

n

(
Σ0,12 + (Σ∗C∗Σ∗)12

Σ∗
12

− Σ0,22 + (Σ∗C∗Σ∗)22
Σ∗

12

)
+ op

(
1

n

)
+ op

((p
n

)2)
+Op

(
1√
n

)
,

where we cancel out common terms in the second equality. Then, α̂BDML
p→ α∗, so the

BDML estimator is consistent.
Moreover,

√
n(α̂BDML − α∗) =

α∗
√
n

(
Σ0,12 + (Σ∗C∗Σ∗)12

Σ∗
12

− Σ0,22 + (Σ∗C∗Σ∗)22
Σ∗

22

)
+ op

(
1√
n

)
+ op

(
p2

n3/2

)
+Op (1) ,

where the Op(1) term is mean zero. Then, if p = o(n3/4),

α∗
√
n

(
Σ0,12 + (Σ∗C∗Σ∗)12

Σ∗
12

− Σ0,22 + (Σ∗C∗Σ∗)22
Σ∗

22

)
= O

(
1√
n

)
+O

(
p2

n3/2

)
= op(1),

then α̂BDML is
√
n-consistent.

Proof of Proposition 6. Both α̂BDML and α̂FDML can be approximated as α̂ ≈ Σ̄12/Σ̄22

where Σ̄ = (W −XB̂)′(W −XB̂)/n. Applying the delta method to this ratio, we obtain the
leading term of their asymptotic variance

nVar

[
Σ∗

12Σ̄22 − Σ∗
22Σ̄12

(Σ∗
22)

2

]
=

n

(Σ∗
22)

4

[
(Σ∗

12)
2Var(Σ̄22) + (Σ∗

22)
2Var(Σ̄12)− 2Σ∗

12Σ
∗
22Cov(Σ̄12, Σ̄22)

]
(1 + o(1)).

Note that nΣ̄ ∼ W2(n− p,Σ∗), then we have

Cov
(
nΣ̄ij, nΣ̄kl

)
= (n− p)

(
Σ∗
ikΣ

∗
jl + Σ∗

ilΣ
∗
jk

)
.

As p = o(n), we have

nVar(Σ̄22) → 2(Σ∗
22)

2,

nVar(Σ̄12) → Σ∗
11Σ

∗
22 + (Σ∗

12)
2,

nCov(Σ̄12, Σ̄22) → 2Σ∗
12Σ

∗
22.

Results follow from plugging in the above expressions.
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For α̂naive, the leading term of the asymptotic variance is given by

nVar

[
V ′(In −XS−1

λ X ′/n)ε/n

Σ∗
22

]
=

(σ∗
ε)

2Σ∗
22

(Σ∗
22)

2
(1 + o(1)) =

(σ∗
ε)

2

Σ∗
22

(1 + o(1)),

where the first equality is given by the fact that

nVar[V ′(In −XS−1
λ X ′/n)ε/n] → Var

(
1

n

n∑
i=1

V ′
i εi

)
= (σ∗

ε)
2Σ∗

22.

Our structural model imposes α∗ = Σ∗
12/Σ

∗
22 and (σ∗

ε)
2 = Σ∗

11− (α∗)2Σ∗
22 = Σ∗

11− (Σ∗
12)

2/Σ∗
22,

so the asymptotic variance expressions coincide.

Proof of Lemma 2. See Theorems 2.8.1 and 5.4.1 in Vershynin (2018).

Proof of Proposition 7. The proof follows from Walker (2024) by verifying his assump-
tions in our high dimensional regression setup.

Part 1: Assumptions 1 and 2 in Walker (2024). Assumption 1 in Walker (2024) is
satisfied by our model setup and Assumptions 2–5. Our Assumption 4 also implies that
E[XiX

′
i] is non-singular, which ensures identification.

Assumption 2 in Walker (2024) is satisfied by our prior together with the additional
assumption that σ2∗

ε and σ2∗
V are known, and the prior for α is continuous and positive over

a neighborhood of α∗.

Part 2: Assumptions 3 and 4 in Walker (2024). For notation simplicity, let θ1 = δ,
θ2 = γ, and θ = (θ′1, θ

′
2)

′. By Corollary 1, since Xi is sub-gaussian and i.i.d., and the
eigenvalues of ΣX is uniformly bounded by [λX , λ̄X ] with 0 < λX ≤ λ̄X <∞. For event

Kn =

{
X ∈ Rn×p : λmin

(
X ′X

n

)
≥ λX

2
and λmax

(
X ′X

n

)
≤ 2λ̄X

}
,

we have that P (Kn)
p→ 1 as n→ ∞.

Define Mn = M, then Walker (2024)’s Assumption 3.1 is automatically satisfied.
For Assumption 3.2 in Walker (2024), the posterior contracts at rate

∥θ − θ∗∥2 = Op

(√
p

n

)
uniformly over X ∈ Kn. By the equivalence of norms, in event Kn, we have

λX
2
∥θ − θ∗∥22 ≤ ∥m−m∗∥2n,2 ≤ 2λ̄X∥θ − θ∗∥22, (A.10)

posterior contraction in ℓ2-norm implies contraction in the L2(Pn) norm for the functions.
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Therefore, let νn =
√
p/n, for some constants Dm, Dθ > 0,

EP ∗ [P (Mn ∩BM,n,2(m
∗, Dmνn)

c | X,W )]

≤ EP ∗ [P (∥θ − θ∗∥2 > Dθνn | X,W,Kn)] + P (Kc
n) → 0.

For Assumption 4, as p = o (
√
n), νn =

√
p/n = o(n−1/4).

Part 3: Assumption 5 in Walker (2024). Assumption 5.1 considers the empirical
process

G(1)
n (m) =

1√
n

n∑
i=1

Vi [m1(Xi)−m∗
1(Xi)]

be uniformly small over the set BM,n,2(m
∗, Dmνn).

In our linear model, write m1(Xi)−m∗
1(Xi) = X ′

i(δ− δ∗). Thus, define the function class

Fν = {f(X) = X ′(δ − δ∗) : ∥δ − δ∗∥2 ≤ ν} .

The empirical L2 norm is defined by

∥f∥n,2 =

[
1

n

n∑
i=1

(X ′
i(δ − δ∗))

2

]1/2
.

Under event Kn, by equivalence of norm (A.10), the metric on Fν is equivalent to the
Euclidean norm on δ− δ∗. Then, the covering number of the ball Bδ,Dθνn = {δ : ∥δ− δ∗∥2 ≤
Dθνn} in Rp satisfies

N (ϵ, Bδ,Dθνn , ∥ · ∥2) ≤
(
3Dθνn
ϵ

)p
,

for ϵ < Dθνn. Thus, the covering number for FDmνn with respect to ∥ · ∥n,2 follows

logN (ϵ,FDmνn , ∥ · ∥n,2) ≲ p log
3Dmνn
ϵ

.

Dudley’s inequality states that there is a constant K > 0 such that

E

[
sup

f∈FDmνn

∣∣∣∣∣ 1√
n

n∑
i=1

Vif(Xi)

∣∣∣∣∣ · 1Kn

]
≤ K

∫ ∞

0

√
logN (ϵ,FDmνn , ∥ · ∥n,2) dϵ

= K

∫ 3Dmνn

0

√
logN (ϵ,FDmνn , ∥ · ∥n,2) dϵ,

where the second line is by the fact that the covering number is one for ϵ > 3Dmνn. Then
the entropy integral becomes∫ 3Dmνn

0

√
p log

3Dmνn
ϵ

dϵ = O(νn
√
p) = o(1).

The first equality follows from that the integral
∫ 1

0

√
log(1/u) du is finite, and the second
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equality is by νn = O(
√
p/n) and p = (

√
n).

Under event Kc
n, we do not have the norm equivalence. However, for any f ∈ FDmνn , we

have that

|G(1)
n (m)| ≤ 1√

n

n∑
i=1

|Vi| ∥Xi∥2Dθνn

≤ Dθνn
√
n · max

1≤i≤n
|Vi| · max

1≤i≤n
∥Xi∥2,

Under our sub-Gaussian assumptions for Vi and Xi, Exercise 2.5.10 in Vershynin (2018) yield

max
1≤i≤n

|Vi| = Op(
√

log n) and max
1≤i≤n

∥Xi∥2 = Op(
√
log n).

Hence, on Kc
n,

sup
f∈FDmνn

|G(1)
n (m)| ≤ Dθνn

√
n ·Op(log n).

Then,

E

[
sup

f∈FDmνn

|G(1)
n (m)|1Kc

n

]
≤ Dθνn

√
n ·O(log n) · P (Kc

n)

= Dθνn
√
n ·O(log n) ·O(p−1)

= O

(
log n
√
p

)
,

where the second line follows from P (Kc
n) = O(p−1) by Corollary 1, and the last line is by

νn =
√
p/n.

Thus, the overall bound on the supremum is given by

E

[
sup

f∈FDmνn

|G(1)
n (m)|

]
≤ O

(
p√
n

)
+O

(
log n
√
p

)
.

Hence, provided that p = o(
√
n) and log n = o(p1/2), the overall supremum tends to zero.

This completes the verification of Walker’s Assumption 5.1 in the L2(Pn) metric. As-
sumption 5.2 can be verified in a similar manner.

Proof of Corollary 1. As Xi is sub-gaussian, Si = XiX
′
i −ΣX is sub-exponential, and its

Orlicz ψ1 norm is bounded, i.e., there exists a constant MS > 0 such that ∥Si∥ψ1 ≤MS, for
all i. By Lemma 2, for any ϵ ≥ 0,

P

{∥∥∥∥X ′X

n
− ΣX

∥∥∥∥ ≥ ϵ

}
= P

{∥∥∥∥∥
n∑
i=1

Si

∥∥∥∥∥ ≥ tn

}
≤ 2p · exp

(
−cn ·min

(
ϵ2

M2
S

,
ϵ

MS

))
.

Typically, ϵ is small, so the mininum is achieved by the quadratic term. We choose
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ϵ =MS

√
2 log p
c̃n

, then

P

{∥∥∥∥X ′X

n
− ΣX

∥∥∥∥ ≥ ϵ

}
≤ 2p · exp(−2 log p) =

2

p
= O(p−1) → 0,

as n→ ∞.
Define event En =

{
X ∈ Rn×p :

∥∥X′X
n

− ΣX

∥∥ < ϵ
}
. For any X ∈ En, Weyl’s inequality

implies that for every eigenvalue in decreasing order,
∣∣λj (X′X

n

)
− λj(ΣX)

∣∣ < ϵ. For large n,

ϵ < λX/2 < λ̄X , so λmin

(
X′X
n

)
≥ λX/2 and λmax

(
X′X
n

)
≤ 2λ̄X , and thus X ∈ Kn. Therefore,

P (Kn) ≥ P (En)
p→ 1,

P (Kc
n) ≤ P (Ecn) = O(p−1),

as n→ ∞.
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