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This online appendix is organized as follows. In Appendix C we establish the asymptotic

properties of the proposed ASF and APE estimators. In Appendix D we discuss a number of

implementation details for the estimators. In Appendix E we extend our main identification results

to models with sequential exogeneity, allowing for lagged outcomes as regressors. In Appendix F

we conduct Monte Carlo experiments to study the finite-sample properties of our estimators. In

Appendix G we present additional figures and tables that supplement the empirical results in the

main text. Appendix H contains proofs for results in Appendices C and E.

C Estimation and Inference

We propose three-step semiparametric estimators for the ASF, APE, and AME. The first step

involves estimating the common parameters β0, the second step is a nonparametric regression

including a generated regressor, and the third step marginalizes over a subset of the regressors.

Such estimators are called partial means.1

We show that the rate of convergence of the ASF estimator is similar to that of a kernel

regression estimator with one continuous regressor. The APE estimator converges at a similar

rate as a derivative of a kernel regression estimator with one continuous regressor. In particular,

we show the ASF converges at the rate
√
NbN and the APE at the rate

√
Nb3N where bN is a

scalar bandwidth used in the estimation of the conditional expectation of Yt. We describe below

in Assumption B6 what assumptions bN must satisfy. These rates of convergence are obtained

from our estimators being partial means, where we average over all components of the conditional

expectation of E[Yt|X ′
tβ0, V ], except for one. These convergence rates do not depend on dX or T ,

1See Newey (1994) for seminal work on the estimation of partial means without generated regressors. The esti-
mation of partial means with generated regressors is studied in Mammen, Rothe, and Schienle (2012, 2016), and Lee
(2018).
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the dimensions of X. Throughout this section, we assume we observe a random sample of (Yi,Xi)

of size N .

Assumption B1 (Random sampling). {(Yi,Xi)}Ni=1 are iid.

We start by considering the estimation of β0, the first step of our semiparametric estimator.

C.1 Estimation of β0

In Section 2.2.2 we discussed several prior identification approaches for the common parameters

β0. Due to the breadth of these approaches, we consider the following high-level assumption on the

rate of convergence of a first-step estimator of β0.

Assumption B2 (First-stage estimator). The estimator β̂ satisfies aN∥β̂ − β0∥ = Op(1) where

aN = O(N ϵ) for some ϵ > 0.

The rate of convergence of this preliminary estimator plays a role in Assumption B6 below.

The convergence of β̂ needs to be relatively fast to establish the limiting distributions of the

ASF and APE estimators. In particular, convergence rates equal to or slower than N1/3 are

incompatible with our rate assumption B6 below. This rules out the maximum score estimator

of Manski (1987) for binary panels, but not the smoothed maximum score estimator of Charlier,

Melenberg, and van Soest (1995) and Kyriazidou (1995). The smoothed maximum score estimator

converges at the rate Nν/(2ν+1), where ν is the order of the kernel used to estimate β̂. In binary

panels, the rate of convergence is usually slower than
√
N . One exception is the

√
N -consistent

conditional maximum likelihood estimator (Rasch (1960), Andersen (1970)) when Ut follows a

logistic distribution. While
√
N -estimation of β0 is generally not possible in binary panels without

specifying Ut’s distribution (Magnac (2004), Chamberlain (2010)), some alternative assumptions

and estimators allow for it. In particular, Lee (1999) considers an “index increment sufficiency”

assumption: (X ′
tβ0, C)|Xt − Xs

d
= (X ′

tβ0, C)|(Xt − Xs)
′β0. Honoré and Lewbel (2002) assume

the presence of a special regressor among Xt. Chen, Si, Zhang, and Zhou (2017) assume that

C = v(X)+ζ, where ζ satisfies (U1, . . . , UT , ζ) ⊥⊥ X. In all three papers,
√
N -consistent estimators

for β0 are proposed.

With continuous outcomes and the index function taking the form v(X)′γ0, Ichimura and Lee

(1991)’s approach can be used to estimate β0 (and non-zero entries in the coefficient matrix γ0)

at a
√
N -rate: see Appendix A.2 for definitions of the notations. Abrevaya (1999) proposes a√

N -consistent leapfrog estimator when Yit = g(X ′
itβ0 + Ci + Uit) and Yit is continuous. Also see

Abrevaya (2000) and Botosaru and Muris (2017) for other
√
N -consistent estimators of β0 in related

models.
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C.2 A Semiparametric Estimator of the ASF

We now present the ASF estimator and show its consistency and asymptotic normality under

our assumptions. As mentioned earlier, this estimator is a three-step estimator. Appendix C.1

discussed the first step, which consists of estimating β0 using an existing method. We now describe

the second and third steps, which estimate the ASF using a sample analog of equation (2.6). In the

second step, we nonparametrically estimate the conditional expectation E[Yt|X ′
tβ0 = x′tβ0, V = v]

using a local polynomial regression of Yt on generated regressor X ′
tβ̂ and V . In the final step, we

evaluate the estimated conditional expectation at (x′tβ̂, Vi) for i = 1, . . . , N , and then average over

the empirical marginal distribution of Vi. To define this estimator, let Zt(β) = (X ′
tβ, V ) ∈ R1+dV

and denote Zt = Zt(β0). Throughout the paper, we use z to denote z = (u, v) ∈ R1+dV where

u ∈ R and v ∈ RdV .

In the rest of this section, we assume that V ’s components are all continuously distributed. We

omit the discrete case for notational simplicity. In our analysis, the number of discrete components

of V does not affect the convergence rate. When the number of support points for the discrete

components is sufficiently small, we can handle these discrete components by performing a cell-by-

cell analysis. Alternatively, they can be accommodated through a discrete kernel, for example, as

in Racine and Li (2004) equation (2.3).

We consider a local polynomial regression of order ℓ ≥ 0. The following notation is similar to

that in Masry (1996). For s ∈ {0, 1, . . . , ℓ}, let Ns =
(
s+dV
dV

)
be the number of distinct (1+dV )-tuples

r ∈ N1+dV such that |r| ≡
∑1+dV

k=1 |rk| = s. We arrange these (1 + dV )-tuples in a lexicographical

order with the highest priority given to the last position so that (0, . . . , 0, s) is the first element and

(s, 0, . . . , 0) is the last element in this sequence. We let τs denote this one-to-one mapping. This

mapping satisfies τs(1) = (0, . . . , 0, s), . . . , τs(Ns) = (s, 0, . . . , 0). For each s ∈ {0, 1, . . . , ℓ}, define
Ns × 1 vector ξs(a) by its kth element aτs(k), where k ∈ {1, . . . , Ns} and a ∈ R1+dV . Here we used

the notation ab = ab11 × · · · × a
bdV
dV

. Let

ξ(a) = (1, ξ1(a)
′, . . . , ξℓ(a)

′)′ ∈ RN̄ ,

where N̄ =
∑ℓ

s=0Ns.

Let K : R1+dV → R denote a (1 + dV )-dimensional kernel. Let Kb(z) = b−(1+dV )K(z), where

b > 0 is a scalar bandwidth. Let bN denote a sequence of bandwidths converging to zero. Let

ĥ(z; β̂) = argmin
h∈RN̄

N∑
j=1

Yjt − ∑
0≤|r|≤ℓ

(
Zjt(β̂)− z

bN

)r

hr

2

KbN

(
Zjt(β̂)− z

bN

)

= argmin
h∈RN̄

N∑
j=1

(
Yjt − ξ

(
Zjt(β̂)− z

bN

)′

h

)2

KbN

(
Zjt(β̂)− z

bN

)
.
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As β̂
p−→ β0, the vector ĥ(z; β̂) estimates coefficients in a Taylor expansion of degree ℓ of the

conditional expectation of Yt given Zt(β0) = z. In particular, the first component of this vector,

denoted by ĥ1(z; β̂) = e′1ĥ(z; β̂), is an estimator of the conditional mean of Yt given (X ′
tβ0, V ). The

vector ĥ(z; β̂) is a least-squares estimator and can be written as

ĥ(z; β̂) = SN (z; β̂)−1TN (z; β̂),

where

SN (z;β) =
1

N

N∑
j=1

ξ

(
Zjt(β)− z

bN

)
ξ

(
Zjt(β)− z

bN

)′
KbN

(
Zjt(β)− z

bN

)

TN (z;β) =
1

N

N∑
j=1

ξ

(
Zjt(β)− z

bN

)
YjtKbN

(
Zjt(β)− z

bN

)
.

In analogy to equation (2.6), we average this conditional mean over the empirical marginal

distribution of Vi to obtain the ASF estimator:

ÂSFt(xt) =
1

N

N∑
i=1

ĥ1(x
′
tβ̂, Vi; β̂)π̂it,

where ĥ1(z; β̂) = e′1ĥ(z; β̂) is the first component in ĥ(z; β̂), π̂it = 1((x′tβ̂, Vi) ∈ Zt) is a trimming

function, and Zt is an appropriately selected compact set in which the density fZt(β)(z) is bounded

away from zero. This trimming function prevents issues with the invertibility of SN (z; β̂). Since

Zt is a fixed compact set, the parameter that is consistently estimated by ÂSFt is a trimmed ASF

defined by

ASFπ
t (xt) ≡ E[E[Yt|X ′

tβ0 = x′tβ0, V ]πt]

=

∫
C
E[Yt|Xt = xt, C = c]P((x′tβ0, V ) ∈ Zt|C = c) dFC(c),

where we let πit = 1((x′tβ0, Vi) ∈ Zt). Note that if (x′tβ0, V ) ∈ Zt with probability 1, ASFπ
t (xt) =

ASFt(xt) and the trimming does not alter the estimand. By expanding Zt along with the sample size

at a slow enough rate,2 we expect that ASFt(xt) is consistently estimated by ÂSFt(xt). However,

since fixed trimming is often employed in the partial mean literature,3 we let Zt be fixed.

To understand the effect of trimming on the estimand, we consider the scenario where P((x′tβ0, V ) ∈
Zt|C = c) is bounded away from zero. Formally, assume that P((x′tβ0, V ) ∈ Zt|C) ∈ [1− ε, 1] with

probability 1. Then, when ASFπ
t (xt) ≥ 0, we can show that ASFπ

t (xt) ∈ [(1−ε)ASFt(xt),ASFt(xt)],

2This is sometimes called a vanishing, or random, trimming approach.
3See, for example, Newey (1994) or more recently Lee (2018).
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and thus

ASFt(xt) ∈
[
ASFπ

t (xt),
ASFπ

t (xt)

1− ε

]
. (C.1)

These bounds are reversed when ASFπ
t (xt) < 0. Note that the bounds collapse to a point as ε

approaches zero, and are narrow when ε is small.

We make the following assumptions to obtain the limiting distribution of the ASF. We begin

with a standard assumption on the kernel.

Assumption B3 (Kernel). The kernel K satisfies K(z) = K(u) ·
∏dV

k=1K(vk) where K : R → R≥0

such that (i) K(u) is equal to zero for all u outside of a compact set, (ii) K is twice continuously

differentiable on R with all these derivatives being Lipschitz continuous, (iii)
∫∞
−∞K(u) du = 1, (iv)

K is symmetric.

Note that we do not require the use of higher-order kernels in this local polynomial regression.

To state the next assumption precisely, let Cm(A) denote the set of m-times continuously dif-

ferentiable functions f : A → R. Here m is an integer and A is a subset of R1+dV . Denote the

differential operator by

∇λ =
∂|λ|

∂zλ1
1 · · · ∂zλ1+dV

1+dV

,

where λ = (λ1, . . . , λ1+dV ) ∈ {0, 1, . . .}1+dV is comprised of nonnegative integers such that
∑1+dV

k=1 λk =

|λ|. For a given set A, let

∥f∥Am = max
|λ|≤m

sup
z∈int(A)

∥∇λf(z)∥.

We omit the A superscript when it does not cause confusion. Next, we impose smoothness and

regularity conditions on the distribution of (Yt, Zt(β)) for β in a neighborhood of β0.

Assumption B4 (Smoothness). Let Bε = {β ∈ B : ∥β − β0∥ ≤ ε}.

(i) There exists ε > 0 such that for all β ∈ Bε, Zt(β) has a density fZt(β)(z) with respect to the

Lebesgue measure;

(ii) fZt(β)(z) and
∥∥∥ ∂
∂β fZt(β)(z)

∥∥∥ are uniformly bounded and uniformly bounded away from zero

for z ∈ Zt and β ∈ Bε, where Zt is a compact set;

(iii)
∥∥fZt(β0)(z)

∥∥Zt

ℓ+2
<∞ and ∥E[Yt|Zt(β0) = z]∥Zt

ℓ+2 <∞;

(iv) x′tβ0 is in the interior of Z1t ≡ {e′1z : z ∈ Zt};

(v) fZt(β0)|Yt
(z|y) exists and is bounded for y ∈ supp(Yt).

Assumptions (i) and (ii) ensure the boundedness and sufficient smoothness of the distribution of

fZt(β) as a function of β in a neighborhood of β0. Assumption (iii) ensures additional smoothness in
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z for the distribution of Zt(β0). The degree of smoothness is linked to the degree of the polynomial

in the local polynomial regression. Assumptions (iv) and (v) are standard technical assumptions.

We also impose the following moment existence condition.

Assumption B5 (Moment existence). Let E[∥Xt∥2] <∞ and E[|Yt|n] <∞ for all n ∈ N.

We can relax the assumption that all moments of Yt exist at the cost of some additional notation

and derivations.4

The following rate conditions govern the bandwidth’s convergence rate.

Assumption B6 (Bandwidth). For some κ, δ > 0, let bN = κ ·N−δ where δ satisfies

max

{
1

4
⌈
ℓ+1
2

⌉
+ 1

, 1− 2ϵ

}
< δ < min

{
2ϵ

3 + 2dV
,

1

1 + 2dV

}
.

A consequence of this assumption is that ℓ must increase as dV increases. In particular, we

require ℓ > dV when β̂ is
√
N -consistent. We can now state the main convergence result for the

ASF.

Theorem C.1 (ASF asymptotics). Suppose the assumptions for Part 1 of Theorem 2.1 hold.

Suppose Assumptions B1–B6 hold. Then,√
NbN

(
ÂSFt(xt)−ASFπ

t (xt)
)

d−→ N (0, σ2ASFt
(x′tβ0)),

where

σ2ASFt
(u) = E

[
Var(Yt|X ′

tβ0 = u, V )
fV (V )

fZt(β0)(u, V )
1((u, V ) ∈ Zt)

]
· e′1
(∫

ξ(z)ξ(z)′K(z) dz

)−1 [∫ (∫
K (z) ξ (z) dv

)(∫
K (z) ξ (z) dv

)′
du

](∫
ξ(z)ξ(z)′K(z) dz

)−1

e1.

To understand the limiting distribution of this estimator, we break down its sampling variation

into four separate sources. The terms associated with three of these are asymptotically negligible

4See the proof of Lemma H.8.
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under our assumptions. We can write

√
NbN

(
ÂSFt(xt)−ASFπ

t (xt)
)
=
√
NbN

(
1

N

N∑
i=1

(
ĥ1(x

′
tβ̂, Vi; β̂)− ĥ1(x

′
tβ̂, Vi;β0)

)
π̂it

)

+
√
NbN

(
1

N

N∑
i=1

(
ĥ1(x

′
tβ̂, Vi;β0)− ĥ1(x

′
tβ0, Vi;β0)

)
π̂it

)

+
√
NbN

(
1

N

N∑
i=1

ĥ1(x
′
tβ0, Vi;β0)(π̂it − πit)

)

+
√
NbN

(
1

N

N∑
i=1

ĥ1(x
′
tβ0, Vi;β0)πit − E[h1(x′tβ0, V ;β0)πt]

)
.

The first term reflects the impact of the generated regressors X ′
tβ̂ being used instead of X ′

tβ0.

The bandwidth constraints involving ϵ—the rate of convergence of β̂ to β0—ensure this term

is asymptotically negligible. The second term reflects the impact of the approximation of the

evaluation point x′tβ0 by x′tβ̂. Once again, ϵ plays a crucial role and this term is asymptotically

negligible as it is of asymptotic order Op(
√
NbNa

−1
N ) = op(1) by our assumptions. The third

term pertains to the estimation of the trimming function πit by π̂it. This term is asymptotically

dominated due to the superconsistency of π̂it to πit uniformly in i = 1, . . . , N . The fourth and

final term asymptotically dominates the other three and converges in distribution to a mean-zero

Gaussian variable at the
√
NbN rate. Some of the technical tools we use to show this convergence

in distribution build on Masry (1996) and Kong, Linton, and Xia (2010).

The rate of convergence of ÂSFt(xt) when ϵ = 1/2 is N δASF , where δASF ranges in the interval(
1+dV
3+2dV

, 1+ℓ
3+2ℓ

)
. In the case where dV = 1 and ℓ = 2, this range corresponds to

(
2
5 ,

3
7

)
. Recall that

2/5 is the standard rate of convergence of univariate kernel estimation when using second-order

kernels. Again, we note that this rate of convergence does not depend on either T or dX . We

discuss various implementation details of this estimator and others in Appendix D.

C.3 Semiparametric Estimation of the APE

We focus here on the case where X
(k)
t is continuously distributed. When X

(k)
t is discretely dis-

tributed, the APE is a difference between two ASFs, in which case Theorem C.1 can be used to

obtain its limiting distribution.

Let ĥ2(z; β̂) = 1
bN
e′2+dV

ĥ(z; β̂) denote the (2 + dV )-th component of the local polynomial re-

gression coefficient vector. By the definition of the above lexicographical order, this is an estimator

of the derivative of the conditional mean of Yt given (X ′
tβ0, V ) = (u, v) with respect to u. This
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estimated derivative is used in the APE estimator, which is defined as

ÂPEk,t(xt) = β̂(k) · 1

N

N∑
i=1

ĥ2(x
′
tβ̂, Vi; β̂)π̂it,

where β̂(k) denotes the kth component of β̂.

As for the ASF, we use a trimming function in the estimator for technical reasons. Therefore, the

estimator is consistent for a trimmed APE defined by APEπ
k,t(xt) ≡ E

[
∂

∂x
(k)
t

E[Yt|X ′
tβ0 = x′tβ0, V ] · πt

]
.

As for the ASF, the untrimmed APE is bounded by APEk,t(xt) ∈
[
APEπ

k,t(xt), (1− ε)−1APEπ
k,t(xt)

]
when P(x′tβ0, V ) ∈ Zt|C) ∈ [1 − ε, 1] with probability 1 and the APE is positive: the bounds are

reversed when it is negative.

The following theorem shows that the APE is
√
Nb3N -consistent, where bN is a bandwidth

satisfying Assumption B6. Like the ASF, the APE’s rate of convergence does not depend on the

dimensions of X.

Theorem C.2 (APE asymptotics). Suppose the assumptions for Part 2 of Theorem 2.1 hold.

Suppose Assumptions B1–B6 hold. Suppose X
(k)
t is continuously distributed. Then,√

Nb3N

(
ÂPEk,t(xt)−APEπ

k,t(xt)
)

d−→ N
(
0, (β

(k)
0 )2 · σ2APEt

(x′tβ0)
)
,

where

σ2APEt
(u) = E

[
Var(Yt|X ′

tβ0 = u, V )
fV (V )

fZt(β0)(u, V )
1((u, V ) ∈ Zt)

]
e′2+dV

(∫
ξ(z)ξ(z)′K(z) dz

)−1

·
[∫ (∫

K (z) ξ (z) dv

)(∫
K (z) ξ (z) dv

)′
du

](∫
ξ(z)ξ(z)′K(z) dz

)−1

e2+dV .

We can decompose the APE’s sample variation into five components. The first four components

are analogous to those in the earlier ASF decomposition. In particular, the fourth component is

β̂(k) ·
√
Nb3N

(
1

N

N∑
i=1

ĥ2(x
′
tβ0, Vi;β0)πit − E[h2(x′tβ0, V ;β0)πt]

)
.

This component converges in distribution to a mean-zero Gaussian distribution while dominating

the other components. The fifth component is due to the presence of β̂(k) and is of the same order

as
√
Nb3N (β̂(k) − β

(k)
0 ) = Op

(√
Nb3NaN

)
= op(1) by B6. The rate of convergence of ÂPEk,t(xt)

when ϵ = 1/2 is N δAPE , where δAPE ranges in the interval
(

dV
3+2dV

, ℓ
3+2ℓ

)
. When dV = 1 and

ℓ = 2, this range equals
(
1
5 ,

2
7

)
. Recall that 2/7 is the standard rate of convergence of derivatives

of univariate kernel estimators when using second-order kernels. Our estimator can approach this

rate whenever ℓ ≥ 2, i.e., the local polynomial contains quadratic terms.
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C.4 Estimation of the LAR and AME

The previous analysis focused on the estimation and inference for the ASF and APE using sample

analog estimators. Under the assumptions of Theorem 2.2, the LAR and AME are also point

identified via a function of the distribution of (Y,X). Here are their sample analogs:

L̂ARk,t(x) = β̂(k) · ĥ2(x′tβ̂, v(x); β̂)

ÂMEk,t =
1

N

N∑
i=1

L̂ARk,t(Xi)π̂it = β̂(k) · 1

N

N∑
i=1

ĥ2(X
′
itβ̂, v(Xi); β̂)π̂it.

Establishing their consistency and asymptotic distribution can be done using the same tools used

to establish the same properties for the ASF and APE. Since their proof is likely similar to those for

the ASF and APE, we leave formal asymptotic analyses for future work. The rate of convergence

of the LAR estimator should be the same as the nonparametric rate used to estimate h2, while we

expect the rate of convergence of the AME to be
√
N when β̂(k) is

√
N -consistent. This is because

the AME averages over all conditioning variables in the local regression of Yt on Zt(β̂).

C.5 Estimation with Estimated Indices

We now briefly consider the estimation of these partial effects under the assumption that C

⊥⊥ X|V ′γ0. Following the notations in Appendix A.2, V is dV × 1, γ0 is dV × dV ∗ , and the new

index V ′γ0 is 1 × dV ∗ . Let γ∗1 , · · · , γ∗dV ∗ be the non-zero elements in each column of γ0, and

V ∗
1 , . . . , V

∗
dV ∗ be the corresponding elements in V , and we have V ′γ0 =

(
V ∗′
1 γ

∗
1 , . . . , V

∗′
dV ∗γ

∗
dV ∗

)
.

Then, γ∗ =
(
γ∗′1 , · · · , γ∗′dV ∗

)′
contains all unknown elements in γ0.

Suppose θ0 ≡ (β′0, γ
∗′)′ is consistently estimated. For example, Ichimura and Lee (1991)’s

estimator is
√
N -consistent for θ0 under their regularity conditions. Let Zt(θ) = (X ′

tβ, V
′γ) ∈

R1+dV ∗ and let

ĥ(z; θ̂) = argmin
h∈RN̄

N∑
j=1

(
Yjt − ξ

(
Zjt(θ̂)− z

bN

)′

h

)2

KbN

(
Zjt(θ̂)− z

bN

)
.
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Then, we can propose the following estimators:

ÂSFt(xt) =
1

N

N∑
i=1

ĥ1(x
′
tβ̂, V

′
i γ̂; θ̂)π̂it

ÂPEk,t(xt) = β̂(k) · 1

N

N∑
i=1

ĥ2(x
′
tβ̂, V

′
i γ̂; θ̂)π̂it

ÂMEk,t = β̂(k) · 1

N

N∑
i=1

ĥ2(X
′
itβ̂, V

′
i γ̂; θ̂)π̂it.

The indices V ′γ0 are usually of lower dimension than V , then the function E[Yt|X ′
tβ0 = x′tβ0, V

′γ0 =

v′γ0] has lower dimension than E[Yt|X ′
tβ0 = x′tβ0, V = v], which helps satisfy the rate assumption

B6. This comes at the cost of an additional generated regressor of the form V ′
i γ̂. From examining

Lemmas H.1–H.7, we expect these additional generated regressors do not impact the estimators’

limiting distributions, but we leave a detailed asymptotic analysis for future work.

D Implementation Details

D.1 General Choices

Here are a few practical concerns related to the implementation of our estimators. We explored

some of these in more detail in our simulations (Appendix F) and empirical illustration (Section

4).

Local polynomial regression. First, a common practice in kernel-based methods is the stan-

dardization and orthogonalization of the conditioning variables, in our case Zt(β̂) = (X ′
tβ̂, V ),

before the nonparametric estimation step. The standardization leads to more comparable scales

across different components of Zt(β̂). The orthogonalization, which can be done via a Cholesky

decomposition, is performed on V alone rather than all of Zt(β̂).
5 This orthogonalization makes it

sensible to use a product of one-dimensional kernels as our joint kernel, as is done in Assumption

B3.

Second, according to Assumption B6, the required polynomial order increases with dV , the

number of continuous index variables. When dV is 1 or 2, as in our Monte Carlo and empirical

illustration, any ℓ ≥ 2 is sufficient. Larger values of ℓ improve the accuracy of the nonparametric

approximation but may cause overfitting, especially in small samples. Our estimates are generally

not sensitive to ℓ around 2 to 4 in our Monte Carlo simulations and empirical illustration. We

use ℓ = 3 in the Monte Carlo simulations and for estimators conditioning on V ′γ0 in the empirical

5This is for technical reasons that x′
tβ̂ and V should enter in the kernel as a product since the latter is averaged

out based on its empirical distribution: see the proofs in Appendix H.1, such as the proof of Lemma H.1.
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illustration, and use ℓ = 2 for estimators conditioning on V in the empirical illustration. The smaller

ℓ is adopted for the latter because there are discrete index variables dividing the observations into

cells, resulting in fewer observations in each cell: see Section 4.2.

Third, we modified the Gaussian kernel as follows to satisfy Assumption B3:

K(u) =


1√
2π

exp(−u2/2) for |u| ≤ 5,

1√
2π

exp(−52/2) ·
(
4(6− |u|)5 − 6(6− |u|)4 + 3(6− |u|)3

)
for 5 < |u| ≤ 6,

0 for |u| > 6.

This kernel is equivalent to the Gaussian kernel for |u| ≤ 5 and their results are generally indistin-

guishable. The truncation at ±6 ensures the compact support assumption B3.(i) holds. The quintic

polynomial for 5 < |u| ≤ 6 guarantees the twice continuous differentiability assumed in B3.(ii).

Bandwidth selection. In practice, one needs to select a bandwidth bN = κ ·N−δ. 6 First, we

choose δ that satisfies our rate conditions in Assumption B6. We then find a scaling constant κ

using the bootstrap over a finite grid: see Appendix D.2 for details. In our simulations and empirical

illustration, κ∗ usually ranges from 0.6 to 4, and the estimated ASF and APE are generally stable

for scaling constants κ ranging in [κ∗ − 0.2, κ∗ + 0.2].

Trimming set. The compact set Zt in the trimming function π̂it = 1((x′tβ̂, Vi) ∈ Zt) helps

bound f
Zt(β̂)

(z) away from zero. Candidate criteria could be: a lower bound directly on f̂
Zt(β̂)

(z) =

1
N

∑N
j=1KbN

(
Zjt(β̂)−z

bN

)
, an upper bound on the condition number of SN (z; β̂) and a lower bound

on its determinant. We specify a threshold for each of the three criteria to construct the trimming

set in our Monte Carlo simulations and empirical illustration.

Asymptotic variance estimation. To conduct inference on the ASF and APE, one could,

in principle, estimate σASFt(x
′
tβ0) and σAPEt(x

′
tβ0) analytically. This can be done by estimating

Var(Yt|X ′
tβ0 = x′tβ0, Vi) via local polynomial regressions of (Yt, Y

2
t ) on (X ′

tβ̂, V ), and replacing

fZt(x
′
tβ0, Vi) by

1
N

∑N
j=1KbN

(
Zjt(β̂)−(x′

tβ̂,Vi)
bN

)
, and fV (Vi) by

1
N

∑N
j=1KV

bN

(
Vj−Vi

bN

)
. For simplicity,

we focus on bootstrap-based inference instead. Another benefit of the bootstrap is that it may

better capture higher-order terms in the asymptotic expansion of our estimator.

Multiple time periods. Finally, note that the above estimator is for the ASF (or APE/AME),

at period t, which may vary with t in the population. If stationarity is further assumed, i.e.,

(gt, FUt) = (gt′ , FUt′ ) for all t, t′ ∈ {1, . . . , T}, then ASFt(x∗) = ASFt′(x∗) for any pair of time

6In principle, we could choose different values of κ for x′
tβ̂ and V , but for simplicity, we keep it the same in the

numerical exercises.
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periods assuming that x∗ ∈ supp(Xt) ∩ supp(Xt′). Then, the ASF does not depend on t, and

we can combine ASF estimates from multiple time periods to obtain a more precise estimate. A

straightforward combination consists of averaging the estimated ASFs over time:

ÂSF(x∗) =
1

T

T∑
t=1

ÂSFt(x∗).

We can reduce its asymptotic variance by selecting weights that depend on t. Weights that minimize

the asymptotic variance of the weighted ASF depend on the inverse of an estimate of the joint

asymptotic covariance matrix of all T ASF estimators. For simplicity, we propose the simple time

average as our rule of thumb.

D.2 Bandwidth Selection via Bootstrap

Let us take the APE as an example. The bandwidth selection for the ASF and AME can be

implemented in a similar fashion. Recall that the bandwidth bN equals κ ·N−δ for a given δ > 0

satisfying our rate conditions. Then, we want to select the tuning parameter κ by minimizing the

integrated mean squared error

IMSE(κ) =

∫
supp(Xt)

E
[(

ÂPEk,t(xt;κN
−δ)−APEk,t(xt; 0)

)2]
dFXt(xt),

where ÂPEk,t(xt; b) is our estimated APE with bandwidth b, and APEk,t(xt; b) denotes the proba-

bility limit of ÂPEk,t(xt; b) for a fixed bandwidth b. Note that APEk,t(xt; 0) is the true APE.

Since the IMSE depends on unknown population quantities, we first approximate

E
[(

ÂPEk,t(xt;κN
−δ)−APEk,t(xt; 0)

)2]
via

1

S

S∑
s=1

(
ÂPE

∗(s)
k,t (xt;κN

−δ)− ÂPEk,t(xt;κ0N
−δ)

)2

.

Here

{
ÂPE

∗(s)
k,t (xt; b)

}S

s=1

denote S draws of the estimated APE according to its bootstrap distri-

bution. We let κ0 be a constant close to 0 and small relative to potential choices of κ. Note that

we cannot set κ0 = 0 since the estimated APE is defined only when κ > 0. We also approximate

FXt(xt) via the empirical distribution of Xt.

More specifically, the bandwidth constant κ can be selected using the following procedure.

Implementation procedure.
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1. Generate a range of evaluation points xt,j , j = 1, . . . , J , with weights ŵ(xt,j) determined from

the empirical distribution of Xt.

2. Choose κ0 to be a small value and estimate ÂPEk,t(xt,j ;κ0N
−δ), j = 1, . . . , J , based on the

original data {Yi,Xi}Ni=1.

3. Generate bootstrap samples {Y (s)
i ,X

(s)
i }Ni=1 for s = 1, . . . , S.

4. For each bootstrap sample s = 1, . . . , S and each bandwidth κ on grid {κ1, . . . , κK}, calculate
ÂPE

∗(s)
k,t (xt,j ;κN

−δ) for j = 1, . . . , J .

5. Choose κ ∈ {κ1, . . . , κK} that minimizes

ÎMSE(κ;w) =

J∑
j=1

(
1

S

S∑
s=1

(
ÂPE

∗(s)
k,t (xt,j ;κN

−δ)− ÂPEk,t(xt,j ;κ0N
−δ)

)2
)
ŵ(xt,j).

In the Monte Carlo simulations and empirical illustration, we choose the number of bootstrap

samples to be S = 100. We initialize κ0 at 0.6 and increase it by 0.1 if a numerical issue occurs.

The bandwidth grid ranges from κ0 to 4 with increments of 0.1.

D.3 Estimated Indices

When the conditioning variable(s) take the form V ′γ0, we can implement the following three vari-

ations of the semiparametric estimator:

1. SP: the original three-step estimator.

(a) First, estimate β0 (possibly with smoothed maximum score if Yt is binary).

(b) Second, perform a local polynomial regression of Yit on (X ′
itβ̂, Vi).

(c) Third, average over Vi.

2. SP (V ′γ0): a three-step estimator for estimated indices.

(a) First, estimate (β0, γ0) using Ichimura and Lee (1991).

(b) Second, perform a local polynomial regression of Yit on (X ′
itβ̂, V

′
i γ̂).

(c) Third, average over Vi.

3. SP (V ′γ0, iter.): a four-step estimator for estimated indices.

(a) First, estimate β0 (possibly with smoothed maximum score if Yt is binary).

(b) Second, plug in β̂ into the objective function in Ichimura and Lee (1991) to estimate γ0.

(c) Third, perform a local polynomial regression of Yit on (X ′
itβ̂, V

′
i γ̂).

(d) Fourth, average over Vi.

Note that: (i) SP (V ′γ0) and SP (V ′γ0, iter.) assume the multiple index structure, which is

more efficient when the assumption holds but is less robust to misspecification. (ii) SP (V ′γ0, iter.)
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reduces the dimension of numerical optimization in Ichimura and Lee (1991) and can achieve better

numerical performance than SP (V ′γ0) for problems with higher dimensions of parameters.

E Extension to a Dynamic Model

We now present an extension of our identification results to a dynamic panel model.

E.1 Related Literature

There is a large literature on dynamic binary response models going back to Cox (1958). In

particular, see Chamberlain (1985), Magnac (2000), Honoré and Kyriazidou (2000), and Honoré

and Tamer (2006) for results on the identification of common coefficients. For recent results under

a logistic error distribution, see Honoré and Weidner (2020), and Kitazawa (2021) for identification

results for common coefficients, and Aguirregabiria and Carro (2021) and Dobronyi, Gu, and Kim

(2021) for other functionals such as AMEs. Khan, Ponomareva, and Tamer (2023) obtain sharp

bounds on common coefficients without assuming logistic errors. Torgovitsky (2019) also obtains

partial identification results without parametric restrictions. See Aristodemou (2021) and Khan,

Ouyang, and Tamer (2021) for results on dynamic discrete response models. Also see Arellano and

Bonhomme (2017) for a review of nonlinear dynamic panel data models.

E.2 Model and Identification

Our previous Assumption A1.(ii) in the main text rules out the dependence of Xt on past Ut′ , thus

preventing X from containing lagged outcome variables. We consider a model that assumes weak or

sequential exogeneity. We distinguish between predetermined and exogenous regressors and denote

them by Xt ≡
(
Xt,pre Xt,exog

)
. Let Xexog = (X1,exog, . . . , XT,exog) denote all past, current, and

future values of the exogenous regressor, and let Xt
pre = (X1,pre, . . . , Xt,pre) denote all current and

past values of the predetermined regressors. We assume that errors are conditionally independent

of past, current, and future values of the exogenous regressors, as well as past and current values

of the predetermined regressors.

Assumption A1†.(ii) (Sequential exogeneity) For each t = 1, . . . , T , Ut ⊥⊥ (Xexog,X
t
pre)|C.

This assumption replaces A1.(ii) and allows some of the future covariates to depend on the current

error term Ut. In particular, it allows for the inclusion of lagged dependent variables in X.

Let us consider a relatively simple dynamic binary model as a running example, where the

only predetermined regressor is the lagged dependent variable, i.e., Xt,pre = Yt−1. For notational
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simplicity, denote X̃it = Xit,exog. Let

Yit = 1(X̃ ′
itβ̃0 + ρ0Yi t−1 + Ci − Uit ≥ 0), (E.1)

and define β0 = (β̃0, ρ0). Versions of this binary outcome model with lagged dependent variables

have been studied in Chamberlain (1985) and Honoré and Kyriazidou (2000), where they study

the identification of β0. Its identification generally requires the presence of units whose covariate

values do not change over time, known as “stayers”. As shown in Honoré and Kyriazidou (2000),

identification of β0 can be achieved even when Ut does not follow a logistic distribution.

Given the identification of β0, we can make a modified index assumption to help identify partial

effects.

Assumption A3† (Dynamic index sufficiency) For t ∈ {1, . . . , T}, given V t = vt(Xexog,X
t
pre) ∈

RdV , where vt is known, let C|(Xexog,X
t
pre)

d
= C|V t.

This assumption replaces A3 and allows the index to depend on all regressors except for future values

of the predetermined regressor. The following theorem shows the identification of our partial effects

in these models.

Theorem E.1 (Identification under weak exogeneity). Let t ∈ {1, . . . , T}, xt ∈ supp(Xt), and

xt ∈ supp(Xexog,X
t
pre). Let Assumptions A1–A3 hold with A1†.(ii) replacing A1.(ii), and A3†

replacing A3. Then,

1. ASFt(xt) = E[E[Yt|X ′
tβ0 = x′tβ0, V

t]] is point identified when supp(V t|X ′
tβ0 = x′tβ0) =

supp(V t);

2. Let the partial derivative of ASFt(xt) with respect to x
(k)
t exist. APEk,t(xt) = E[ ∂

∂x
(k)
t

E[Yt|X ′
tβ0 =

x′tβ0, V
t]] is point identified when supp(V t|X ′

tβ0 = u) = supp(V t) for all u in a neighborhood

of x′tβ0;

3. LARk,t(x
t) = ∂

∂x
(k)
t

E[Yt|X ′
tβ0 = x′tβ0, V = v]|v=vt(xt) is point identified when the derivative

exists and when vt(x
t) ∈ supp(V t|X ′

tβ0 = u) for all u in a neighborhood of x′tβ0;

4. AMEk,t = E[ ∂

∂X
(k)
t

E[Yt|X ′
tβ0, V

t]] is point identified if the above condition on LARk,t(x
t) holds

for all xt ∈ supp(Xexog,X
t
pre) up to a PXexog,Xt

pre
-measure zero set.

In the dynamic binary outcome model above, to identify the ASF at time t = 1, one can consider

an index that depends on (X̃1, . . . , X̃T , Y0), where Y0 is the initial time period outcome. Specifically,

let V 1 = (ṽ(X̃), Y0), where X̃ denotes Xexog. Assume that β0 is identified, for example, from the

identification results in Honoré and Kyriazidou (2000). Define V1 = supp(V 1) and V1(x̃′1β̃0 +

y
0
ρ0) = supp(V 1|X̃ ′

1β0 + Y0ρ0 = x̃′1β̃0 + y
0
ρ0). Then,

ASF1(x̃1, y0) = E[1(U1 ≤ x̃′1β̃0 + y
0
ρ0 + C)]
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=

∫
V1

E[1(U1 ≤ x̃′1β̃0 + y
0
ρ0 + C)|ṽ(X̃) = v, Y0 = y0] dFṽ(X̃),Y0

(v, y0)

=

∫
V1(x̃′

1β̃0+y
0
ρ0)

E[1(U1 ≤ x̃′1β̃0 + y
0
ρ0 + C)|ṽ(X̃) = v, Y0 = y0] dFṽ(X̃),Y0

(v, y0)

=

∫
V1(x̃′

1β̃0+y
0
ρ0)

E[1(U1 ≤ x̃′1β̃0 + y
0
ρ0 + C)|X̃ ′

1β0 + Y0ρ0 = x̃′1β̃0 + y
0
ρ0, ṽ(X̃) = v, Y0 = y0] dFṽ(X̃),Y0

(v, y0)

=

∫
V1(x̃′

1β̃0+y
0
ρ0)

E[1(U1 ≤ X̃ ′
1β̃0 + Y0ρ0 + C)|X̃ ′

1β0 + Y0ρ0 = x̃′1β̃0 + y
0
ρ0, ṽ(X̃) = v, Y0 = y0] dFṽ(X̃),Y0

(v, y0)

= E[E[Y1|X̃ ′
1β0 + Y0ρ0 = x̃′1β̃0 + y

0
ρ0, ṽ(X̃), Y0]].

The first equality follows from U1 ⊥⊥ (X̃1, Y0)|C, the second from iterated expectations, and the

third from the support assumption in the theorem’s statement. The fourth follows from (C,U1) ⊥
⊥ X̃ ′

1β0 + Y0ρ0|V 1, which is implied by Assumptions A1†.(ii) and A3†, and the proof is similar to

step 1 in the proof of Theorem 2.1. Finally, the last two equalities follow directly.

One can also identify the APE or AME under the appropriate support conditions on the index

variables. Finding sufficient index variables in dynamic models is potentially more delicate than in

static ones because exchangeability of covariates across time is an unlikely justification in dynamic

models. We leave an analysis of this task for future work.
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F Monte Carlo Simulations

We conduct two sets of Monte Carlo simulation experiments based on binary panel data models

with the conditioning variable being V (Case 1) or V ′γ0 (Case 2). We focus on the former while

streamlining the discussion of the latter, as their main messages are similar. Both cases account

for two key features: multidimensional index variables and flexible error distributions.7

F.1 Case 1: Conditioning on V

The Monte Carlo design is summarized in Table F.1. Note that both Xt and V are 2-by-1 vectors.

Covariates X
(k)
t , k = 1, 2, are drawn from a standard normal distribution, which satisfies the

support conditions in Theorem 2.1. Our choices of N = 1500 and T = 10 are directly comparable

with the dataset in our empirical illustration on female labor force participation, in which N = 1461

and T = 9. We use “DGP xy” to indicate the data-generating process (DGP) with fC|V being

type x and fUt being type y. The distribution of individual effects, fC|V , is skewed in DGP 1y and

bimodal in DGP 2y.8 For the error term, we consider error distributions fUt that exhibit skewness

(DGP x1) or fat-tails (DGP x2).

We evaluate the estimated ASF and APE based on a collection of xt =
(
x
(1)
t , x

(2)
t

)′
. We fix

x
(1)
t at its population mean (i.e., x

(1)
t = 0) and vary x

(2)
t ∈ [−1, 1], which covers 68% of the

distribution of X
(2)
t . Given these non-logistic error distributions, we estimate β0 using a smoothed

maximum score estimator as in Charlier, Melenberg, and van Soest (1995) and Kyriazidou (1995),

and use a fourth-order cdf kernel to satisfy the bandwidth requirement in Assumption B6. We

normalize |β̂(1)| = 1 since the identification of β0 is up to scale. We use a local cubic regression

(i.e., polynomial order ℓ = 3) to estimate the conditional expectation of Yt evaluated at (x′tβ̂, V ).

Finally, given the DGPs, the ASF and APE do not change over time, so we average the estimated

ASFs and APEs across time periods. See Section D.1 for more details.

Figure F.1 compares the estimated APE to the true APE based on 100 Monte Carlo repeti-

tions in each setup, and Figure F.2 plots the bias, standard deviation, and root mean square error

(RMSE). Figures F.3 and F.4 show corresponding graphs for the ASF estimates. We see that

the semiparametric estimator better captures the peak in the skewed case and the valley in the

bimodal case, whereas the RE and CRE reverse the valley in the bimodal case due to their para-

metric restrictions. As expected, the semiparametric estimator generates smaller biases and larger

standard deviations than the RE and CRE. The improvement in bias dominates the deterioration

7For Monte Carlo simulations with logistic errors, please see the previous version of this paper (Liu, Poirier, and
Shiu, 2021).

8Many empirical applications feature skewed and/or multimodal distributions of unobserved individual hetero-
geneity. For example, Liu (2023) estimated the latent productivity distribution of young firms, which exhibits a
long right tail since good ideas are scarce. Also, Fisher and Jensen (2022) found two modes in the underlying skill
distribution of mutual fund management—a primary mode with average ability and a secondary mode with poor
performance.
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Table F.1: Monte Carlo Design - Case 1

Model: Yit = 1 (X ′
itβ0 + Ci − Uit ≥ 0)

Common param.: β0 = (1, 2)′

Covariates: Xit ∼ N (02×1, I2)

Index: Vi =
1
T

∑T
t=1Xit

Sample Size: N = 1500, T = 10
# Repetitions: Nsim = 100

fC|V :

DGP 1y, skewed: Ci|Vi ∼
(∑2

k=1

(
V

(k)
i

)2
+ 1

)
· SN (0, 1, 10)

DGP 2y, bimodal: Ci|Vi ∼ 1
2N

(∑2
k=1

(
V

(k)
i

)2
+ 2, 1

)
+ 1

2N
(
−
∑2

k=1

(
V

(k)
i

)2
− 2, 1

)
fUt , with E (Uit) = 0 and Var (Uit) = 1:

DGP x1, skewed: Uit ∼ 1
9N

(
2, 12
)
+ 8

9N
(
−1

4 ,
1
2

)
DGP x2, fat-tailed: Uit ∼ 1

5N (0, 4) + 4
5N

(
0, 14
)
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Notes: SN (ξ, ω, α) denotes a skewed normal distribution with location parameter ξ, scale parameter ω, and shape

parameter α, and its pdf is given by f(x) = 2
ω
ϕ
(
x−ξ
ω

)
Φ
(
α
(
x−ξ
ω

))
, where ϕ(·) and Φ(·) denote the pdf and cdf of a

standard normal distribution. The two left panels depict fC|V . The black solid and blue dashed lines are conditional

on

√∑2
k=1

(
V

(k)
i

)2
= 0 and 0.5, respectively. The rightmost panel depicts fUt . The blue solid and red dashed lines

are fUt in DGPs G.x1 (skewed) and G.x2 (fat-tailed), respectively. For reference, the thin gray line plots a rescaled

logistic distribution with zero mean and unit variance.

18



in standard deviation for most covariate values in all these setups. The difference between the RE

and CRE is relatively negligible—their parametric assumptions in fC|V seem too restrictive and

lead to considerable misspecification biases given current DGPs.

In Table F.2, the first three columns summarize the APE estimator’s performance by computing

weighted average performance measures across the collection of evaluation points xt with weights

proportional to fXt(xt). Similar to what we observed in Figures F.1 and F.2, the semiparametric

estimator yields the smallest RMSE in all cases. The last three columns present the minimum,

median, and maximum of the ratios of RMSE(xt) to the true APE(xt). The minimum, median,

and maximum are taken over the collection of evaluation points xt. We see that the ratios range

between 2.5% and 120% across all setups. Therefore, the RMSEs are generally sizeable compared

to the true APEs, and the more precise semiparametric estimator is preferable. The RE and CRE

have lower minimal ratios, which occurs at xt’s where the grey bands “intersect” with true APE

curves; at the same time, the semiparametric estimator largely reduces the median and maximal

ratios. For example, in DGP 22, the median (maximal) ratio of the semiparametric estimator is

less than 1/3 (1/4) of its RE and CRE counterparts.

We also examine the performance for the common parameter and ASF in Table F.3. The struc-

ture of the ASF part of the table is the same as Table F.2 for the APE. The ratios of RMSE(xt) to

the true ASF(xt) are generally smaller than their APE counterparts, and the semiparametric esti-

mator dominates the RE and CRE. For β̂, the nonparametric smoothed maximum score estimator

produces less biased but noisier estimates, and their RMSEs are larger than those of the RE and

CRE. Nevertheless, the semiparametric estimator still better traces the ASF’s shape, and hence

providing the most accurate ASF estimates. Its RMSEs are around or less than half that of the

RE and CRE.9

9To take a closer look at how the β0 estimation affects the APE estimation, we further examine an infeasible
semiparametric estimator with known β0 (see Table 8 in the previous version of this paper, Liu, Poirier, and Shiu
(2021)). Results show that the smoothed maximum score estimates of β0 slightly increase the absolute value of the
bias, the standard deviation, and the RMSE, but the difference is minor—the flexible semiparametric estimator of
the APE partially absorbs the effect of the slightly imprecisely estimated β0.
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Table F.2: APE Estimation - Monte Carlo Case 1

|Bias| SD RMSE Min Med. Max

DGP 11
Semiparam. 0.013 0.012 0.016 4.2% 8.4% 15.7%
RE 0.028 0.005 0.029 2.7% 13.6% 39.1%
CRE 0.028 0.005 0.029 2.7% 13.3% 39.1%

DGP 12
Semiparam. 0.018 0.012 0.020 3.3% 6.0% 35.2%
RE 0.047 0.006 0.047 2.6% 18.3% 107.5%
CRE 0.046 0.006 0.047 2.5% 18.4% 107.3%

DGP 21
Semiparam. 0.019 0.018 0.023 7.2% 8.5% 20.5%
RE 0.071 0.004 0.071 3.1% 23.8% 81.5%
CRE 0.071 0.004 0.071 3.0% 23.7% 81.7%

DGP 22
Semiparam. 0.022 0.019 0.026 7.4% 9.3% 26.6%
RE 0.086 0.004 0.086 6.3% 31.1% 116.9%
CRE 0.086 0.004 0.086 6.2% 31.0% 117.2%

Notes: |Bias| indicates the absolute value of the bias. The reported |Bias|, SD, and RMSE are weighted averages across

the collection of evaluation points xt, where the weights are proportional to fXt(xt). Bold entries indicate the best

estimator (i.e., with the smallest RMSE) for each DGP. The last three columns are the minimum/median/maximum

of RMSE(xt)/APE(xt)× 100% over xt.
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Figure F.1: Estimated APE vs True APE - Monte Carlo Case 1
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t . Black solid lines are the true APE. Gray bands are collections of lines where

each line corresponds to the estimated APE based on one simulation repetition. Thin dashed lines at the bottom of

all panels show f
X

(2)
t

(
x
(2)
t

)
.
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Figure F.2: Bias, Standard Deviation, and RMSE in APE Estimation - Monte Carlo Case 1
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Figure F.3: Estimated ASF vs True ASF - Monte Carlo Case 1
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Notes: X-axes are potential values x
(2)
t . Black solid lines are the true ASF. Gray bands are collections of lines where

each line corresponds to the estimated ASF based on one simulation repetition. Thin dashed lines at the bottom of

all panels show f
X

(2)
t

(
x
(2)
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)
.
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Figure F.4: Bias, Standard Deviation, and RMSE in ASF Estimation - Monte Carlo Case 1
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Table F.3: Estimation of Common Parameter and ASF - Monte Carlo Case 1

β̂(2) ASF
Bias SD RMSE |Bias| SD RMSE Min Med. Max

DGP 11
Semiparam. 0.011 0.031 0.033 0.011 0.008 0.013 0.5% 1.7% 4.4%
RE 0.004 0.023 0.023 0.020 0.006 0.021 0.4% 2.8% 4.1%
CRE 0.005 0.022 0.023 0.020 0.006 0.021 0.4% 2.8% 4.2%

DGP 12
Semiparam. 0.012 0.026 0.028 0.013 0.008 0.015 0.4% 2.1% 5.0%
RE 0.005 0.019 0.020 0.025 0.006 0.026 1.2% 3.4% 6.5%
CRE 0.006 0.019 0.020 0.025 0.006 0.026 1.2% 3.4% 6.3%

DGP 21
Semiparam. 0.015 0.064 0.065 0.014 0.014 0.017 2.5% 3.2% 6.4%
RE 0.007 0.041 0.042 0.037 0.010 0.038 2.2% 7.7% 16.8%
CRE 0.008 0.043 0.043 0.037 0.010 0.039 2.2% 7.7% 16.9%

DGP 22
Semiparam. 0.011 0.072 0.073 0.014 0.015 0.018 2.8% 3.3% 6.8%
RE 0.004 0.043 0.043 0.044 0.010 0.045 2.0% 9.5% 16.9%
CRE 0.005 0.044 0.044 0.044 0.010 0.045 2.0% 9.5% 17.0%

Notes: For the RE and CRE, we normalize β̂ such that |β̂(1)| = 1 to allow comparisons across estimators. |Bias|
indicates the absolute value of the bias. The |Bias|, SD, and RMSE of the ASF are weighted averages across the

collection of evaluation points xt, where the weights are proportional to fXt(xt). Bold entries indicate the best ASF

estimator (i.e., with the smallest RMSE) for each DGP. The last three columns are the minimum/median/maximum

of RMSE(xt)/ASF(xt)× 100% over xt.
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Table F.4: Monte Carlo Design - Case 2

Model: Yit = 1 (X ′
itβ0 + Ci − Uit > 0)

Common param.: β0 = (1, 2)′, γ0 = (1, 1)′

Covariates: Xit ∼ N (02×1, I2)

Index: V ′
i γ0 =

1
T

∑T
t=1X

′
itγ0

Sample Size: N = 1500, T = 10
# Repetitions: Nsim = 100

fC|V :

DGP 1y, skewed: Ci|Vi ∼ V ′
i γ0 +

(
(V ′

i γ0)
2 + 1

)
· SN (0, 1, 10)

DGP 2y, bimodal: Ci|Vi ∼ V ′
i γ0 +

1
2N

(
(V ′

i γ0)
2 + 2, 1

)
+ 1

2N
(
− (V ′

i γ0)
2 − 2, 1

)
fUt , with E (Uit) = 0 and Var (Uit) = 1:
DGP x1, skewed: Uit ∼ 1

9N
(
2, 12
)
+ 8

9N
(
−1

4 ,
1
2

)
DGP x2, fat-tailed: Uit ∼ 1

5N (0, 4) + 4
5N

(
0, 14
)

Notes: See the description in Table F.1.

F.2 Monte Carlo Simulation Case 2: Conditioning on V ′γ0, Estimated Indices

The Monte Carlo design is described in Table F.4, which is modified from Case 1. Now the

distributions of individual effects, fC|V , depend on a linear combination of V . Here we consider

the three variations of the semiparametric estimator discussed in Appendix D.3: SP, SP (V ′γ0),

and SP (V ′γ0, iter.). In the current setup, there is no misspecification for all three variations of

the semiparametric estimator.

Figure F.5 shows the estimated APEs, and Figure F.6 depicts the APE performance statistics.

Figures F.7 and F.8 present the estimated ASFs and performance statistics, respectively. Table F.5

reports the bias, standard deviation, RMSE, and RMSE ratio statistics for the APE estimators, and

Table F.6 for the common parameter and ASF. In terms of estimation performance, the differences

across the three variations of the semiparametric estimator are relatively small and, similar to Case

1, they dominate the RE and CRE.
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Figure F.5: Estimated APE vs True APE - Monte Carlo Case 2
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Notes: X-axes are potential values x
(2)
t . Black solid lines are the true APE. Gray bands are collections of lines where

each line corresponds to the estimated APE based on one simulation repetition. Thin dashed lines at the bottom of

all panels show f
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t
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Figure F.6: Bias, Standard Deviation, and RMSE in APE Estimation - Monte Carlo Case 2
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Figure F.7: Estimated ASF vs True ASF - Monte Carlo Case 2
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Notes: X-axes are potential values x
(2)
t . Black solid lines are the true ASF. Gray bands are collections of lines where

each line corresponds to the estimated ASF based on one simulation repetition. Thin dashed lines at the bottom of

all panels show f
X

(2)
t
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Figure F.8: Bias, Standard Deviation, and RMSE in ASF Estimation - Monte Carlo Case 2
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Table F.5: APE Estimation - Monte Carlo Case 2

|Bias| SD RMSE Min Med. Max

DGP 11

SP (V ′γ0, iter.) 0.023 0.019 0.027 3.5% 8.5% 23.6%
SP (V ′γ0) 0.021 0.023 0.026 4.1% 7.8% 23.3%
SP 0.024 0.019 0.028 3.1% 8.4% 30.3%
RE 0.039 0.008 0.040 2.0% 9.4% 31.3%
CRE 0.041 0.008 0.042 2.8% 10.6% 31.1%

DGP 12

SP (V ′γ0, iter.) 0.032 0.019 0.036 3.4% 11.6% 66.5%
SP (V ′γ0) 0.024 0.024 0.030 3.9% 8.7% 59.2%
SP 0.033 0.019 0.037 2.8% 10.2% 78.9%
RE 0.064 0.009 0.065 2.0% 17.3% 98.6%
CRE 0.069 0.009 0.070 1.7% 19.2% 100.6%

DGP 21

SP (V ′γ0, iter.) 0.018 0.019 0.022 7.0% 9.0% 15.8%
SP (V ′γ0) 0.017 0.020 0.021 7.6% 9.0% 13.5%
SP 0.018 0.018 0.022 6.9% 7.8% 17.1%
RE 0.064 0.005 0.065 1.7% 20.9% 69.7%
CRE 0.063 0.005 0.064 2.0% 20.2% 68.6%

DGP 22

SP (V ′γ0, iter.) 0.019 0.020 0.023 6.8% 9.4% 18.4%
SP (V ′γ0) 0.019 0.023 0.024 7.9% 11.1% 16.4%
SP 0.019 0.019 0.023 7.3% 8.7% 20.9%
RE 0.078 0.004 0.078 4.5% 26.3% 96.1%
CRE 0.077 0.004 0.077 5.0% 26.6% 94.8%

Notes: |Bias| indicates the absolute value of the bias. The reported |Bias|, SD, and RMSE are weighted averages across

the collection of evaluation points xt, where the weights are proportional to fXt(xt). Bold entries indicate the best

estimator (i.e., with the smallest RMSE) for each DGP. The last three columns are the minimum/median/maximum

of RMSE(xt)/APE(xt)× 100% over xt.
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Table F.6: Estimation of Common Parameter and ASF - Monte Carlo Case 2

β̂(2) ASF
Bias SD RMSE |Bias| SD RMSE Min Med. Max

DGP 11

SP (V ′γ0, iter.) 0.019 0.050 0.053 0.011 0.008 0.012 0.4% 1.9% 10.3%
SP (V ′γ0) 0.006 0.068 0.068 0.018 0.010 0.020 0.5% 1.7% 24.7%
SP 0.019 0.050 0.053 0.019 0.009 0.021 0.6% 2.4% 24.8%
RE -0.030 0.036 0.047 0.016 0.006 0.017 0.3% 2.9% 5.8%
CRE 0.013 0.038 0.040 0.015 0.006 0.016 0.2% 2.7% 9.8%

DGP 12

SP (V ′γ0, iter.) 0.006 0.042 0.042 0.011 0.008 0.013 0.5% 2.4% 11.5%
SP (V ′γ0) 0.006 0.067 0.067 0.019 0.010 0.021 0.4% 2.1% 26.9%
SP 0.006 0.042 0.042 0.020 0.009 0.022 0.6% 3.1% 27.9%
RE -0.036 0.030 0.047 0.022 0.006 0.023 0.2% 3.9% 9.6%
CRE 0.005 0.032 0.032 0.024 0.006 0.025 0.2% 3.6% 13.7%

DGP 21

SP (V ′γ0, iter.) 0.010 0.063 0.064 0.012 0.013 0.015 2.5% 2.9% 6.2%
SP (V ′γ0) -0.057 0.120 0.132 0.011 0.013 0.014 2.0% 2.9% 4.5%
SP 0.010 0.063 0.064 0.014 0.015 0.018 2.9% 3.1% 7.7%
RE -0.007 0.041 0.042 0.035 0.010 0.037 2.2% 7.3% 16.7%
CRE 0.003 0.042 0.042 0.035 0.010 0.036 2.2% 7.1% 16.2%

DGP 22

SP (V ′γ0, iter.) 0.002 0.070 0.069 0.012 0.013 0.016 2.5% 2.8% 6.2%
SP (V ′γ0) -0.058 0.110 0.123 0.011 0.014 0.015 2.2% 2.8% 5.3%
SP 0.002 0.070 0.069 0.014 0.015 0.018 3.0% 3.1% 7.7%
RE -0.010 0.043 0.044 0.041 0.009 0.043 2.0% 8.8% 16.4%
CRE 0.000 0.044 0.044 0.041 0.009 0.042 2.0% 8.6% 16.0%

Notes: For the RE and CRE, we normalize β̂ such that |β̂(1)| = 1 to allow comparisons across estimators. |Bias|
indicates the absolute value of the bias. The |Bias|, SD, and RMSE of the ASF are weighted averages across the

collection of evaluation points xt, where the weights are proportional to fXt(xt). Bold entries indicate the best ASF

estimator (i.e., with the smallest RMSE) for each DGP. The last three columns are the minimum/median/maximum

of RMSE(xt)/ASF(xt)× 100% over xt.
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G Additional Figures and Tables for the Empirical Illustration

Figure G.1 plots the distributions of the covariates, and Table G.1 summarizes the corresponding

descriptive statistics.

Figure G.2 depicts the estimated coefficients on time dummies which capture time-variation in

aggregate participation rates. Point estimates of the time profiles are generally parallel to each other

(from top to bottom: the smoothed maximum score, RE, and CRE) and show higher participation

rates after 1983, which coincides with the beginning of the Great Moderation. Most of the time-

variation within each estimator and differences across estimators are insignificant at the 10% level,

and standard errors generally increase with time for all three estimators. The smoothed maximum

score yields the widest confidence band, as expected.

Figure G.3 plots the estimated ASF and APE based on alternative specifications. In the bench-

mark specification for the results in the main paper, we construct the indices based on the initial

value of the covariates Xi1 and use our original three-step semiparametric estimator without es-

timated indices (see Supplemental Appendix D.3 for detailed comparison across variations of the

semiparametric estimator). To explore the effects of these choices on the empirical findings, we

examine a range of alternative specifications. Specifically, we consider (i) Vi constructed from Xi1

or Xi =
1
T

∑
tXit, and (ii) with or without estimated indices (V ′γ0).

10 Comparing with the bench-

mark specification in Figure 1, we see that, in general, the estimates do not change much as we

vary the timing of V or incorporate estimated indices.

10For robustness checks with alternative coarsening schemes and the local logit estimator, see the previous version
of this paper (Liu, Poirier, and Shiu, 2021).
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Figure G.1: Distribution of Observables - Female Labor Force Participation

Notes: The sample consists of N = 1461 married women observed for T = 9 years from the PSID between 1980–1988.

See Fernández-Val (2009) for details.

Figure G.2: Estimated Coefficients on Time Dummies - Female Labor Force Participation

Notes: Black/blue/orange solid lines represent point estimates of the coefficients on time dummies using the smoothed

maximum score/RE/CRE. Bands with corresponding colors indicate the 90% symmetric percentile-t confidence in-

tervals based on bootstrap standard deviations. The right panel further zooms in on y-axis values between −0.4 and

0.6.
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Table G.1: Descriptive Statistics - Female Labor Force Participation

25% Med. 75% Mean SD Skew. Kurt.

(a) Full Sample, #obs = N × T = 13,149
Participate - - - 0.72 0.45 - -
Children 0–2 0 0 0 0.23 0.47 1.99 6.79
Children 3–5 0 0 1 0.29 0.51 1.60 4.85
Children 6–17 0 1 2 1.05 1.10 0.91 3.46
Log Husband’s Income 10.09 10.51 10.83 10.43 0.69 -0.89 7.27
Age 30.00 35.00 43.00 37.30 9.22 0.56 2.50

(b) Always Participate, %obs = 46.27%
Children 0–2 0 0 0 0.18 0.41 2.25 7.56
Children 3–5 0 0 0 0.23 0.46 1.93 6.12
Children 6–17 0 1 2 1.00 1.06 0.91 3.47
Log Husband’s Income 10.08 10.47 10.77 10.37 0.65 -1.36 8.89
Age 31.00 36.00 44.00 37.98 9.04 0.51 2.45

(c) Never Participate, %obs = 8.28%
Children 0–2 0 0 0 0.21 0.47 2.35 8.50
Children 3–5 0 0 0 0.23 0.48 2.05 6.79
Children 6–17 0 1 2 0.99 1.19 1.30 4.54
Log Husband’s Income 10.13 10.62 11.04 10.53 0.85 -0.74 6.52
Age 35.00 43.00 52.00 42.98 10.09 -0.06 1.90

(d) Movers, %obs = 45.45%
Participate - - - 0.57 0.49 - -
Children 0–2 0 0 1 0.28 0.51 1.70 5.74
Children 3–5 0 0 1 0.36 0.56 1.27 3.82
Children 6–17 0 1 2 1.11 1.11 0.83 3.18
Log Husband’s Income 10.11 10.55 10.87 10.47 0.69 -0.59 5.81
Age 29.00 34.00 40.00 35.57 8.71 0.73 2.88

Notes: The sample consists of N = 1461 married women observed for T = 9 years from the PSID between 1980–1988.

“Movers” refers to women who participate in the labor market in some years but not all. See Fernández-Val (2009)

for details.
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Figure G.3: Estimated ASF and APE - Female Labor Force Participation, Alternative Specifications
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Notes: X-axes are potential values of log husband’s income. Blue/orange solid lines represent point estimates of the

ASF and APE using the RE/CRE. Bands with corresponding colors indicate the 90% bootstrap confidence intervals.

Thin dashed lines at the bottom of all panels show the distribution of log husband’s income.
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H Proofs

H.1 Proofs for Appendix C

We now present a sequence of lemmas that are used to prove our two main theorems of Appendix

C: Theorem C.1 and Theorem C.2. When applied to matrices, let ∥ · ∥ denote the spectral norm.

Lemma H.1 (Convergence of SN ). Suppose B1–B6 hold. Then,

sup
z∈Zt

∥∥∥SN (z; β̂)− SN (z;β0)
∥∥∥ = op

(
1√
NbN

)
.

Proof of Lemma H.1. Select the same generic entry from matrices SN (z; β̂) and SN (z;β0). These

entries can respectively be written as

Sτ,τ ′

N (z; β̂) ≡ 1

N

N∑
j=1

(
Zjt(β̂)− z

bN

)τ (
Zjt(β̂)− z

bN

)τ ′

KbN

(
Zjt(β̂)− z

bN

)

and

Sτ,τ ′

N (z;β0) ≡
1

N

N∑
j=1

(
Zjt(β0)− z

bN

)τ (Zjt(β0)− z

bN

)τ ′

KbN

(
Zjt(β0)− z

bN

)
,

where τ , τ ′ are vectors of exponents which satisfy 0 ≤ |τ |, |τ ′| ≤ ℓ. Let τ1 and τ ′1 denote the first

components of τ and τ ′, and let τ−1 and τ ′−1 denote vectors with all other components of τ and τ ′.

We can write

Sτ,τ ′

N (z; β̂)− Sτ,τ ′

N (z;β0)

=
1

N

N∑
j=1

(X ′
jtβ̂ − u

bN

)τ1+τ ′1
1

bN
K

(
X ′

jtβ̂ − u

bN

)
−
(
X ′

jtβ0 − u

bN

)τ1+τ ′1 1

bN
K

(
X ′

jtβ0 − u

bN

)
·
(
Vj − v

bN

)τ−1+τ ′−1

KV
bN

(
Vj − v

bN

)
=

1

N

N∑
j=1

[
1

bN
Γ

(
X ′

jtβ̂ − u

bN

)
− 1

bN
Γ

(
X ′

jtβ0 − u

bN

)](
Vj − v

bN

)τ−1+τ ′−1

KV
bN

(
Vj − v

bN

)

where KV
bN

(v) = b−dV
N ·

∏dV
k=1K(vk), and Γ(u) ≡ uτ1+τ ′1K(u) for generic u ∈ R.

By B3, Γ is continuously differentiable. A first-order Taylor expansion yields

Sτ,τ ′

N (z; β̂)− Sτ,τ ′

N (z;β0) =
1

N

N∑
j=1

1

b2N
γ

(
X ′

jtβ̃ − u

bN

)(
Vj − v

bN

)τ−1+τ ′−1

KV
bN

(
Vj − v

bN

)
X ′

jt(β̂ − β0)
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where β̃ is such thatX ′
jtβ̃ is betweenX ′

jtβ̂ andX ′
jtβ0, and where γ(u) ≡ Γ′(u) = (τ1+τ

′
1)u

τ1+τ ′1−1K(u)+

uτ1+τ ′1K ′(u).

Since P(β̂ ∈ Bε) → 1 as N → ∞, with probability arbitrarily close to 1, we have that

sup
z∈Zt

∣∣∣Sτ,τ ′

N (z; β̂)− Sτ,τ ′

N (z;β0)
∣∣∣

≤ 1

b2N
sup
z∈Zt

∥∥∥∥∥∥ 1

N

N∑
j=1

γ

(
X ′

jtβ̃ − u

bN

)(
Vj − v

bN

)τ−1+τ ′−1

KV
bN

(
Vj − v

bN

)
Xjt

−E

[
γ

(
X ′

tβ̃ − u

bN

)(
V − v

bN

)τ−1+τ ′−1

KV
bN

(
V − v

bN

)
Xt

]∥∥∥∥∥ ∥β̂ − β0∥

+ sup
z∈Zt

1

b2N

∥∥∥∥∥E
[
KV

bN

(
V − v

bN

)(
V − v

bN

)τ−1+τ ′−1

γ

(
X ′

tβ̃ − u

bN

)
Xt

]∥∥∥∥∥ ∥β̂ − β0∥

≤ 1

b2N
sup

z∈Zt,β∈Bε,b∈(0,b̄]

∥∥∥∥∥∥ 1

N

N∑
j=1

γ

(
X ′

jtβ − u

b

)(
Vj − v

b

)τ−1+τ ′−1

KV
b

(
Vj − v

b

)
Xjt

−E

[
γ

(
X ′

tβ − u

b

)(
V − v

b

)τ−1+τ ′−1

KV
b

(
V − v

b

)
Xt

]∥∥∥∥∥ ∥β̂ − β0∥ (H.1)

+ sup
z∈Zt,β∈Bε

1

b2N

∥∥∥∥∥E
[
γ

(
X ′

tβ − u

bN

)(
V − v

bN

)τ−1+τ ′−1

KV
bN

(
V − v

bN

)
Xt

]∥∥∥∥∥ ∥β̂ − β0∥, (H.2)

where b̄ > 0. To obtain the stochastic order of term (H.1), define the class of functions

F̃ =

{
γ

(
X ′

tβ − u

b

)
: u ∈ R, β ∈ Bε, b ∈ (0, b̄]

}
.

These functions are of the form γ(X ′
tc+ d) where c = β/b and d = −u/b. Since K has a bounded

domain and is twice continuously differentiable with bounded derivatives (Assumption B3), the

function γ(u) is of bounded variation on R. By Nolan and Pollard (1987) Lemma 22.(ii), the above

class of functions is Euclidean. It is also bounded since K is bounded. Similarly, the classes

FVk
=

{(
Vk − vk

b

)τk+1+τ ′k+1

K

(
Vk − vk

b

)
: vk ∈ R, b ∈ (0, b̄]

}

are Euclidean and bounded for k = 1, . . . , dV by the same argument as above. Here τk+1 and τ ′k+1

denote the (k + 1)th components of τ and τ ′. The product of bounded Euclidean classes is also

bounded and Euclidean, hence

FV =

{
γ

(
X ′

tβ − u

b

)(
V − v

b

)τ−1+τ ′−1

KV

(
V − v

b

)
: z ∈ Zt, β ∈ Bε, b ∈ (0, b̄]

}
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is bounded and Euclidean. By B5, E[∥Xt∥2] <∞. Hence, by Lemma 2.14 (ii) in Pakes and Pollard

(1989), the class

F =

{
γ

(
X ′

tβ − u

b

)(
V − v

b

)τ−1+τ ′−1

KV

(
V − v

b

)
Xt : z ∈ Zt, β ∈ Bε, b ∈ (0, b̄]

}

is also Euclidean, and hence Donsker. Therefore, by the continuous mapping theorem,

1
√
Nb2+dV

N

sup
z∈Zt,β∈Bε,b∈(0,b̄]

∥∥∥∥∥∥ 1√
N

N∑
j=1

{
γ

(
X ′

jtβ − u

b

)(
Vj − v

b

)τ−1+τ ′−1

KV

(
Vj − v

b

)
Xjt

−E

[
γ

(
X ′

tβ − u

b

)(
V − v

b

)τ−1+τ ′−1

KV

(
V − v

b

)
Xt

]}∥∥∥∥∥
=

1√
Nb4+2dV

N

·Op(1)

= Op

(
(Nb4+2dV

N )−1/2
)
.

Thus, term (H.1) can be written as

1

b2N
sup

z∈Zt,β∈Bε,b∈(0,b̄]

∥∥∥∥∥∥ 1

N

N∑
j=1

γ

(
X ′

jtβ − u

b

)(
Vj − v

b

)τ−1+τ ′−1

KV
b

(
Vj − v

b

)
Xjt

−E

[
γ

(
X ′

tβ − u

b

)(
V − v

b

)τ−1+τ ′−1

KV
b

(
V − v

b

)
Xt

]∥∥∥∥∥ ∥β̂ − β0∥

= Op

(
(Nb4+2dV

N )−1/2
)
·Op(a

−1
N )

= op

(
(NbN )−1/2

)
,

where the last line follows from a2Nb
3+2dV
N → ∞ as N → ∞ (Assumption B6).

To bound term (H.2), we first note that

1

b2N

∥∥∥∥∥E
[
γ

(
X ′

tβ − u

bN

)(
V − v

bN

)τ−1+τ ′−1

KV
bN

(
V − v

bN

)
Xt

]∥∥∥∥∥
=

∥∥∥∥∥E
[
∂

∂β

(
Zt(β)− z

bN

)τ+τ ′

KbN

(
Zt(β)− z

bN

)]∥∥∥∥∥
=

∥∥∥∥∥
∫

∂

∂β

(
z̃ − z

bN

)τ+τ ′

KbN

(
z̃ − z

bN

)
fZt(β)(z̃) dz̃

∥∥∥∥∥
=

∥∥∥∥∫ ∂

∂β
aτ+τ ′K (a) fZt(β)(z + abN ) da

∥∥∥∥ .
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The last equality follows from the change of variables z̃ = z + abN . We then have that

sup
z∈Zt,β∈Bε

∥∥∥∥∫ ∂

∂β
aτ+τ ′K (a) fZt(β)(z + abN )da

∥∥∥∥ ≤ sup
z∈Zt,β∈Bε

∥∥∥∥ ∂∂β fZt(β)(z)

∥∥∥∥ ∣∣∣∣∫ aτ+τ ′K (a) da

∣∣∣∣
<∞.

To see that the last inequality holds, recall Assumption B4.(ii), and that K is a bounded function

with compact support, hence aτ+τ ′K(a) is bounded with compact support. Therefore, term (H.2)

is of order O(1) · ∥β̂ − β0∥ = Op(a
−1
N ) = op

(
(NbN )−1/2

)
since, by B6, NbNa

−2
N → 0 as N → ∞.

Combining the rates of convergence of terms (H.1) and (H.2), we obtain

sup
z∈Zt

∣∣∣Sτ,τ ′

N (z; β̂)− Sτ,τ ′

N (z;β0)
∣∣∣ = op

(
1√
NbN

)

Since this rate of convergence applies uniformly in z ∈ Zt to a generic element of Sτ,τ ′

N (z; β̂) −
Sτ,τ ′

N (z;β0), it also applies uniformly in z ∈ Zt to the matrix norm of SN (z; β̂)− SN (z;β0), which

concludes the proof.

Define

S(z;β0) =

∫
ξ(a)ξ(a)′K(a) da · fZt(β0)(z).

Lemma H.2 (Convergence of SN to S). Suppose B1–B6 hold. Then,

sup
z∈Zt

∥SN (z;β0)− S(z;β0)∥ = Op

( log(N)

Nb1+dV
N

)1/2
+O(bN ).

Proof of Lemma H.2. This is Corollary 1.(ii) in Masry (1996) with θ = 1 (in his notation), therefore

we verify its assumptions. His condition 1(b) holds by B4.(iv). His conditions 2 and 3 hold by B3

and B4.(iii). Finally, the rate conditions of Theorem 2 in Masry (1996) hold by B6. Therefore, all

assumptions of his corollary hold and the above result holds.

Lemma H.3 (Convergence of TN ). Suppose B1–B6 hold. Then,

sup
z∈Zt

∥∥∥TN (z; β̂)− TN (z;β0)
∥∥∥ = op

(
1√
NbN

)
.

Proof of Lemma H.3. Select the same generic component from TN (z; β̂) and TN (z;β0). These com-

40



ponents can respectively be written as

T τ
N (z; β̂) ≡ 1

N

N∑
j=1

(
Zjt(β̂)− z

bN

)τ

YjtKbN

(
Zjt(β̂)− z

bN

)

T τ
N (z;β0) ≡

1

N

N∑
j=1

(
Zjt(β0)− z

bN

)τ

YjtKbN

(
Zjt(β0)− z

bN

)
,

where τ is a vector of exponents which satisfies 0 ≤ |τ | ≤ ℓ. Again let τ1 denote the first component

of τ and let τ−1 denote all other components of τ . Let Γ(u) ≡ uτ1K(u) and γ(u) ≡ Γ′(u) =

τ1u
τ1−1K(u) + uτ1K ′(u). As in the proof of Lemma H.1, we write

T τ
N (z; β̂)− T τ

N (z;β0)

=
1

N

N∑
j=1

Yjt

[
1

bN
Γ

(
X ′

jtβ̂ − u

bN

)
− 1

bN
Γ

(
X ′

jtβ0 − u

bN

)](
Vj − v

bN

)τ−1

KV
bN

(
Vj − v

bN

)

=
1

N

N∑
j=1

Yjt
1

b2N
γ

(
X ′

jtβ̃ − u

bN

)(
Vj − v

bN

)τ−1

KV
bN

(
Vj − v

bN

)
X ′

jt(β̂ − β0)

By the same arguments as in the proof of Lemma H.1, and by E[Y 2
jt] <∞, we can show that

sup
z∈Zt

∣∣∣T τ
N (z; β̂)− T τ

N (z;β0)
∣∣∣

≤ 1

b2N
sup

z∈Zt,β∈Bε,b∈(0,b̄]

∥∥∥∥∥∥ 1

N

N∑
j=1

YjtXjtγ

(
X ′

jtβ − u

b

)(
Vj − v

b

)τ−1

KV
b

(
Vj − v

b

)

−E
[
YtXtγ

(
X ′

tβ − u

b

)(
V − v

b

)τ−1

KV
b

(
V − v

b

)]∥∥∥∥ ∥β̂ − β0∥

+ sup
z∈Zt,β∈Bε

1

b2N

∥∥∥∥E [YtXtγ

(
X ′

tβ − u

bN

)(
V − v

bN

)τ−1

KV
bN

(
V − v

bN

)]∥∥∥∥ ∥β̂ − β0∥

= Op

 1√
Nb4+2dV

N

 ·Op(a
−1
N ) +O(1) ·Op(a

−1
N )

= op

(
1√
NbN

)
holds with probability arbitrarily close to 1 as N → ∞ since P(β̂ ∈ Bε) → 1. The last equality

follows from B6.

Since this rate of convergence applies uniformly in z ∈ Zt to generic components of the vector

TN (z; β̂)− TN (z;β0), it applies to its vector norm uniformly in z ∈ Zt as well, which concludes the

proof.
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Let

T (z;β0) =

∫
ξ(a)K(a) da · E[Yt|Zt(β0) = z]fZt(β0)(z).

Also, recall that Zt ≡ Zt(β0).

Lemma H.4 (Convergence of TN to T ). Suppose B1–B6 hold. Then,

sup
z∈Zt

∥TN (z;β0)− T (z;β0)∥ = Op

( log(N)

Nb1+dV
N

)1/2
+O(bN ).

Proof of Lemma H.4. By the triangle inequality,

sup
z∈Zt

∥TN (z;β0)− T (z;β0)∥ ≤ sup
z∈Zt

∥TN (z;β0)− E[TN (z;β0)]∥+ sup
z∈Zt

∥E[TN (z;β0)]− T (z;β0)∥ .

Generic components of TN (z;β0)− E[TN (z;β0)] can be written as

sup
z∈Zt

∣∣∣∣∣∣ 1N
N∑
j=1

(
Zjt − z

bN

)τ

YjtKbN

(
Zjt − z

bN

)
− E

[(
Zt − z

bN

)τ

YtKbN

(
Zt − z

bN

)]∣∣∣∣∣∣ .
By an argument similar to that used in Corollary 1.(ii) in Masry (1996) or in Lemma B.ii.(2) in

Rothe and Firpo (2019), this term is of order Op

((
log(N)

Nb
1+dV
N

)1/2
)
.

Next, note that generic elements of E[TN (z;β0)] are of the form

E
[(

Zt − z

bN

)τ

YtKbN

(
Zt − z

bN

)]
=

∫ (
z̃ − z

bN

)τ

E[Yt|Zt = z̃]KbN

(
z̃ − z

bN

)
fZt(z̃) dz̃

=

∫
aτK(a)E[Yt|Zt = z + abN ]fZt(z + abN ) da

≤ E[Yt|Zt = z]fZt(z)

∫
aτK(a) da+ bN sup

z∈Zt

∥∥∥∥ ∂∂z (E[Yt|Zt = z]fZt(z))

∥∥∥∥ · ∥∥∥∥∫ aτK(a) · a da
∥∥∥∥ .

The second equality follows from a change in variables. Note that E[Yt|Zt = z]fZt(z)
∫
aτK(a) da

is the corresponding element of T (z;β0). Therefore,

sup
z∈Zt

∣∣∣∣∫ aτK(a)E[Yt|Zt = z + abN ]fZt(z + abN ) da− E[Yt|Zt = z]fZt(z)

∫
aτK(a) da

∣∣∣∣
≤ bN sup

z∈Zt

∥∥∥∥ ∂∂z (E[Yt|Zt = z]fZt(z))

∥∥∥∥ · ∥∥∥∥∫ aτK(a) · a da
∥∥∥∥ .

By B3,
∥∥∫ aτK(a) · a da

∥∥ < ∞. By B4.(iii), we have that supz∈Zt

∥∥ ∂
∂z (E[Yt|Zt = z]fZt(z))

∥∥ <
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∞. Therefore,

sup
z∈Zt

∥E[TN (z;β0)]− T (z;β0)∥ = O(bN )

and

sup
z∈Zt

∥TN (z;β0)− T (z;β0)∥ = Op

( log(N)

Nb1+dV
N

)1/2
+O(bN ).

Lemma H.5 (Convergence of SN part 2). Suppose B1–B6 hold. Then,

sup
z∈Zt

∥∥∥∥ ∂∂uSN (z;β0)

∥∥∥∥ = op

(
aN√
NbN

)
.

Proof of Lemma H.5. As in the proof of Lemma H.1, consider a generic entry of SN (z;β0), which

we write as

Sτ,τ ′

N (z;β0) =
1

N

N∑
j=1

(
Zjt − z

bN

)τ+τ ′

KbN

(
Zjt − z

bN

)
.

Its derivative with respect to u, the first element of z, is

∂

∂u
Sτ,τ ′

N (z;β0) =
−1

b2+dV
N

1

N

N∑
j=1

γ

(
X ′

jtβ0 − u

bN

)(
Vj − v

bN

)τ−1+τ ′−1

KV

(
Vj − v

bN

)

where γ(u) = (τ1 + τ ′1)u
τ1+τ ′1−1K(u) + uτ1+τ ′1K ′(u).

Therefore, we have that

sup
z∈Zt

∣∣∣∣ ∂∂uSτ,τ ′

N (z;β0)

∣∣∣∣ = sup
z∈Zt

∣∣∣∣∣∣ −1

b2+dV
N

1

N

N∑
j=1

γ

(
X ′

jtβ0 − u

bN

)(
Vj − v

bN

)τ−1+τ ′−1

KV

(
Vj − v

bN

)∣∣∣∣∣∣
≤ sup

z∈Zt,b∈(0,b̄]

1
√
Nb2+dV

N

∣∣∣∣∣∣ 1√
N

N∑
j=1

{
γ

(
X ′

jtβ0 − u

b

)(
Vj − v

b

)τ−1+τ ′−1

KV

(
Vj − v

b

)

−E

[
γ

(
X ′

tβ0 − u

b

)(
V − v

b

)τ−1+τ ′−1

KV

(
V − v

b

)]}∣∣∣∣∣ (H.3)

+ sup
z∈Zt

1

b2N

∣∣∣∣∣E
[
γ

(
X ′

tβ0 − u

b

)(
V − v

b

)τ−1+τ ′−1

KV
bN

(
V − v

b

)]∣∣∣∣∣ . (H.4)
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The class {
γ

(
X ′

tβ0 − u

b

)(
V − v

b

)τ−1+τ ′−1

KV

(
V − v

b

)
: z ∈ Zt, b ∈ (0, b̄]

}

is a subset of FV which is Euclidean, therefore it is also Euclidean and hence Donsker. We therefore

have that term (H.3) is of order Op

(
1√

Nb
4+2dV
N

)
.

We can bound term (H.4) as follows,

sup
z∈Zt

1

b2N

∣∣∣∣∣E
[
γ

(
X ′

tβ0 − u

bN

)(
V − v

bN

)τ−1+τ ′−1

KV
bN

(
V − v

bN

)]∣∣∣∣∣
= sup

z∈Zt

∣∣∣∣∣E
[
∂

∂u

(
Zt − z

bN

)τ+τ ′

KbN

(
Zt − z

bN

)]∣∣∣∣∣
= sup

z∈Zt

∣∣∣∣∣
∫

∂

∂u

(
z̃ − z

bN

)τ+τ ′

KbN

(
z̃ − z

bN

)
fZt(β0)(z̃) dz̃

∣∣∣∣∣
= sup

z∈Zt

∣∣∣∣∫ ∂

∂u
aτ+τ ′K (a) fZt(z + abN ) da

∣∣∣∣
≤ sup

z∈Zt

∣∣∣∣ ∂∂ufZt(z)

∣∣∣∣ ∣∣∣∣∫ aτ+τ ′K (a) da

∣∣∣∣
= O(1).

The third equality follows from the change of variables z̃ = z+ abN . The final line follows from B3

and B4.(iii).

Therefore,

sup
z∈Zt

∣∣∣∣ ∂∂z1Sτ,τ ′

N (z;β0)

∣∣∣∣ = Op

 1√
Nb4+2dV

N

+O(1)

= op

(
aN√
NbN

)

since, as N → ∞, 1√
Nb

4+2dV
N

·
√
NbN
aN

= O(N ϵ−δ(3/2+dV )) = o(1) by B6, and since
√
NbN
aN

· O(1) =

O(N1/2−ϵ−δ/2) = o(1), also by B6. Since this holds for a generic entry of the matrix ∂
∂uSN (z;β0),

it holds for its matrix norm as well, which concludes this lemma.

Lemma H.6 (Convergence of TN part 2). Suppose B1–B6 hold. Then,

sup
z∈Zt

∥∥∥∥ ∂∂uTN (z;β0)

∥∥∥∥ = op

(
aN√
NbN

)
.
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Proof of Lemma H.6. As in the proof of Lemma H.3, consider a generic component the vector of

TN (z;β0). Write this element as

T τ
N (z;β0) =

1

N

N∑
j=1

(
Zjt − z

bN

)τ

YjtKbN

(
Zjt − z

bN

)
.

Its derivative with respect to u is

∂

∂u
T τ
N (z;β0) =

−1

b2+dV
N

1

N

N∑
j=1

Yjtγ

(
X ′

jtβ − u

b

)(
Vj − v

b

)τ−1

KV

(
Vj − v

b

)
.

where γ(u) = τ1u
τ1−1K(u) + uτ1K ′(u). The rest of the proof follows directly from the arguments

used in the proofs of Lemmas H.3 and H.5.

Lemma H.7 (Convergence of indicators). Suppose B1–B6 hold. Suppose β̃
p−→ β0. Let πit(β) ≡

1((x′tβ, Vi) ∈ Zt). Then,

P

(
sup

i=1,...,N

∣∣∣πit(β̃)− πit(β0)
∣∣∣ = 0

)
→ 1

as N → ∞.

Proof of Lemma H.7. We note that

sup
i=1,...,N

|πit(β̃)− πit(β0)| = sup
i=1,...,N

(
1((x′tβ̃, Vi) ∈ Zt, (x

′
tβ0, Vi) /∈ Zt) + 1((x′tβ̃, Vi) /∈ Zt, (x

′
tβ0, Vi) ∈ Zt)

)
≤ sup

i=1,...,N

(
1(x′tβ̃ ∈ Z1t, x

′
tβ0 /∈ Z1t) + 1(x′tβ̃ /∈ Z1t, x

′
tβ0 ∈ Z1t)

)
= 1(x′tβ̃ ∈ Z1t, x

′
tβ0 /∈ Z1t) + 1(x′tβ̃ /∈ Z1t, x

′
tβ0 ∈ Z1t),

where Z1t = {z1 = e′1z : z ∈ Zt}. By B4.(v), x′tβ0 ∈ Z1t, and therefore 1(x′tβ̃ ∈ Z1t, x
′
tβ0 /∈ Z1t) =

0, and 1(x′tβ̃ /∈ Z1t, x
′
tβ0 ∈ Z1t) = 1(x′tβ̃ /∈ Z1t).

By assumption, β̃ converges in probability to β0. By Theorem 18.9.(v) in Vaart (1998), P(x′tβ̃ ∈
Z1t) → 1(x′tβ0 ∈ Z1t) = 1 since x′tβ0 is not in the boundary of Z1t by B4.(v).

Therefore,

P

(
sup

i=1,...,N
|πit(β̃)− πit(β0)| = 0

)
≥ P(1(x′tβ̃ /∈ Z1t) = 0) = P(x′tβ̃ ∈ Z1t) → P(x′tβ0 ∈ Z1t) = 1

as N → ∞.
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Lemma H.8 (ASF convergence in distribution). Suppose B1–B6 hold. Then,

√
NbN

(
1

N

N∑
i=1

ĥ1(x
′
tβ0, Vi;β0)πit − E[h1(x′tβ0, V ;β0)πt]

)
d−→ N (0, σ2ASFt

(x′tβ0)).

Proof of Lemma H.8. This proof builds on the proof of Corollary 2 in Kong, Linton, and Xia (2010)

(KLX hereafter). First, we verify that Assumptions A1–A7 of KLX hold under ours. Their A1

holds with our squared-loss function, and we note that ψ(εi) ≡ −2(Yit−E[Yt|Zit]) in their notation.

By our A5, E[|ψ(εi)|ν1 ] < ∞ holds for arbitrary large ν1. Their A2 holds immediately. Their A3

holds by our B3. Their A4 and A5 hold by our B4.(iii). Their A6 holds if

Nb1+dV
N / log(N) → ∞

Nb
1+dV +2(ℓ+1)
N / log(N) = O(1)

Nν2/8−λ1−1/4b
(1+dV )(ν2/8−λ1+3/4)
N log(N)−ν2/8+5/4+λ1 → ∞,

for some 2 < ν2 ≤ ν1. Since bN = κ ·N−δ, these conditions are equivalent to

1− δ(1 + dV ) > 0

1− δ(3 + 2ℓ+ dV ) ≤ 0

ν2/8− λ1 − 1/4− δ(1 + dV )(ν2/8− λ1 + 3/4) > 0.

Since ν1 can be made arbitrarily large, ν2 can also taken to be arbitrarily large, and the last

inequality is equivalent to

δ <
1

1 + dV
.

By our B6, these rate conditions all hold. Finally, their A7 holds by our B4.(v). Since these

assumptions hold for λ1 = 1, we can use equation (13) in KLX and their Corollary 1 to write

ĥ1(z;β0) = h1(z;β0) +B1,N (z) +
1

N

N∑
j=1

ϕ1,jN (z) +R1,N (z)

where B1,N (z) is a bias term satisfying supz∈Zt
|B1,N (z)| = O(bℓ+1

N ) if ℓ is odd or O(bℓ+2
N ) if ℓ is

even, where ϕ1,jN (z) are mean-zero random variables, and where R1,N (z) is a higher-order term

satisfying supz∈Zt
|R1,N (z)| = Op

(
log(N)

Nb
1+dV
N

)
.
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Second, we note that

√
NbN

(
1

N

N∑
i=1

ĥ1(x
′
tβ0, Vi;β0)πit − E[h1(x′tβ0, V ;β0)πt]

)

=
√
NbN

1

N

N∑
i=1

(
ĥ1(x

′
tβ0, Vi;β0)− h1(x

′
tβ0, Vi;β0)

)
πit (H.5)

+
√
bN · 1√

N

N∑
i=1

(
h1(x

′
tβ0, Vi;β0)πit − E[h1(x′tβ0, V ;β0)πt]

)
. (H.6)

To analyze term (H.5), we use the fact that

√
NbN

1

N

N∑
i=1

(
ĥ1(x

′
tβ0, Vi;β0)− h1(x

′
tβ0, Vi;β0)

)
πit

=
√
NbN

1

N

N∑
i=1

B1,N (x′tβ0, Vi)πit

+
√
NbN

1

N2

N∑
i=1

N∑
j=1

ϕ1,jN (x′tβ0, Vi)πit +
√
NbN

1

N

N∑
i=1

R1,N (x′tβ0, Vi)πit.

When ℓ is odd,
√
NbN

1
N

∑N
i=1B1,N (x′tβ0, Vi)πit is o(1) because∣∣∣∣∣√NbN 1

N

N∑
i=1

B1,N (x′tβ0, Vi)πit

∣∣∣∣∣ ≤√NbN · sup
z∈Zt

|B1,N (z)|

=
√
NbN ·O(bℓ+1

N )

= O(

√
Nb2ℓ+3

N )

and by B6. A similar derivation applies when ℓ is even.

We now show that term
√
NbN

1
N2

∑N
i=1

∑N
j=1 ϕ1,jN (x′tβ0, Vi)πit converges in distribution to a

normal distribution. By standard arguments from Masry (1996), which are also referred to in the
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proof of Corollary 2 in KLX, we have that

1

N2

N∑
i=1

N∑
j=1

ϕ1,jN (x′tβ0, Vi)πit

=
−1

NbN

N∑
i=1

(Yit − E[Yt|Zit])fV (Vi)1((x
′
tβ0, Vi) ∈ Zt)

· e′1SN (x′tβ0, Vi;β0)
−1

∫
K
(
X ′

itβ0 − x′tβ0
bN

, v

)
ξ

(
X ′

itβ0 − x′tβ0
bN

, v

)
dv

1 +Op

( log(N)

NbdVN

)1/2


=
−1

NbN

N∑
i=1

(Yit − E[Yt|Zit])fV (Vi)1((x
′
tβ0, Vi) ∈ Zt)

· e′1SN (x′tβ0, Vi;β0)
−1

∫
K
(
X ′

itβ0 − x′tβ0
bN

, v

)
ξ

(
X ′

itβ0 − x′tβ0
bN

, v

)
dv + op(1).

We now calculate the asymptotic variance of

−1

NbN

N∑
i=1

(Yit−E[Yt|Zit])fV (Vi)1((x
′
tβ0, Vi) ∈ Zt)·e′1SN (x′

tβ0, Vi;β0)
−1

∫
K
(
X ′

itβ0 − x′
tβ0

bN
, v

)
ξ

(
X ′

itβ0 − x′
tβ0

bN
, v

)
dv.

We have that

Var

(
−1

NbN

N∑
i=1

(Yt − E[Yt|Zt])fV (V )1((x′
tβ0, V ) ∈ Zt) · e′1SN (x′

tβ0, V ;β0)
−1

∫
K
(
X ′

tβ0 − x′
tβ0

bN
, v

)
ξ

(
X ′

tβ0 − x′
tβ0

bN
, v

)
dv

)

=
1

Nb2N
E
[
(Yt − E[Yt|Zt])

2fV (V )21((x′
tβ0, V ) ∈ Zt)e

′
1SN (x′

tβ0, V ;β0)
−1

(∫
K
(
X ′

tβ0 − x′
tβ0

bN
, v

)
ξ

(
X ′

tβ0 − x′
tβ0

bN
, v

)
dv

)
(∫

K
(
X ′

tβ0 − x′
tβ0

bN
, v

)
ξ

(
X ′

tβ0 − x′
tβ0

bN
, v

)
dv

)′

SN (x′
tβ0, V ;β0)

−1e1

]
Recall that SN (z;β0) = S(z;β0)+op(1) =

∫
ξ(a)ξ(a)′K(a) da ·fZt(β0)(z)+op(1) uniformly in z ∈ Zt
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by Lemma H.2. Therefore, the above expression

=
1

Nb2N
E

[
Var(Yt|Zt(β0))

fV (V )2

fZt(β0)(x
′
tβ0, V )2

1((x′
tβ0, V ) ∈ Zt)e

′
1

(∫
ξ(a)ξ(a)′K(a) da

)−1

(∫
K
(
X ′

tβ0 − x′
tβ0

bN
, v

)
ξ

(
X ′

tβ0 − x′
tβ0

bN
, v

)
dv

)
·
(∫

K
(
X ′

tβ0 − x′
tβ0

bN
, v

)
ξ

(
X ′

tβ0 − x′
tβ0

bN
, v

)
dv

)′

(∫
ξ(a)ξ(a)′K(a) da

)−1

e1

]
+ o((NbN )−1)

=
1

Nb2N
E

[∫
Var(Yt|X ′

tβ0 = ũ, V )
fV (V )2

fZt(β0)(x
′
tβ0, V )2

1((x′
tβ0, V ) ∈ Zt)e

′
1

(∫
ξ(a)ξ(a)′K(a) da

)−1

(∫
K
(
ũ− x′

tβ0

bN
, v

)
ξ

(
ũ− x′

tβ0

bN
, v

)
dv

)
·
(∫

K
(
ũ− x′

tβ0

bN
, v

)
ξ

(
ũ− x′

tβ0

bN
, v

)
dv

)′

(∫
ξ(a)ξ(a)′K(a) da

)−1

e1 fX′
tβ0|V (ũ|V ) dũ

]
+ o((NbN )−1)

=
1

NbN
E

[∫
Var(Yt|X ′

tβ0 = x′
tβ0 + bNu, V )

fV (V )2

fZt(β0)(x
′
tβ0, V )2

1((x′
tβ0, V ) ∈ Zt)e

′
1

(∫
ξ(a)ξ(a)′K(a) da

)−1

·
(∫

K (z) ξ (z) dv

)(∫
K (z) ξ (z) dv

)′(∫
ξ(a)ξ(a)′K(a) da

)−1

e1fX′
tβ0|V (x′

tβ0 + bNu|V ) du

]
+ o((NbN )−1)

=
1

NbN
E
[
Var(Yt|X ′

tβ0 = x′
tβ0, V )

fV (V )

fZt(β0)(x
′
tβ0, V )

1((x′
tβ0, V ) ∈ Zt)

]
· e′1
(∫

ξ(a)ξ(a)′K(a) da

)−1 ∫ (∫
K (z) ξ (z) dv

)(∫
K (z) ξ (z) dv

)′

du

(∫
ξ(a)ξ(a)′K(a) da

)−1

e1 + o((NbN )−1)

=
1

NbN
σ2
ASFt

(x′
tβ0) + o((NbN )−1).

The third equality follows from the change of variables ũ = x′tβ0 + bNu. The above equations

re-derive and fix a minor typo in equation (A.42) in KLX. By the proof of Corollary 2 in KLX, we

have that

√
NbN

1

N2

N∑
i=1

N∑
j=1

ϕ1,jN (x′tβ0, Vi)πit
d−→ N (0, σ2ASFt

(x′tβ0)).

Also, the term
√
NbN

1
N

∑N
i=1R1,N (x′tβ0, Vi)πit is op(1) because∣∣∣∣∣√NbN 1

N

N∑
i=1

R1,N (x′tβ0, Vi)πit

∣∣∣∣∣ ≤√NbN · sup
z∈Zt

|R1,N (z)|

=
√
NbN ·Op

(
log(N)

Nb1+dV
N

)

= Op

 log(N)√
Nb1+2dV

N


= op(1)

49



by B6.

Third, term (H.6) above is of order Op(
√
bN ) = op(1) by an application of the central limit

theorem.

Finally, we obtain that

√
NbN

(
1

N

N∑
i=1

ĥ1(x
′
tβ0, Vi;β0)πit − E[h1(x′tβ0, V ;β0)πt]

)
=
√
NbN

1

N2

N∑
i=1

N∑
j=1

ϕjN (x′tβ0, Vi)πit + op(1)

d−→ N (0, σ2ASFt
(x′tβ0)).

We use the following technical lemma in the proof of Theorem C.1.

Lemma H.9. Let A and B be positive-definite, symmetric matrices. Let λmin(A) denote the

minimum eigenvalue of A. Then,

|λmin(A)− λmin(B)| ≤ ∥A−B∥.

Proof of Lemma H.9. Since A and B are positive-definite and symmetric, they are invertible and

λmin(A) = ∥A−1∥−1 > 0 and λmin(B) = ∥B−1∥−1 > 0. We then have

|λmin(A)− λmin(B)| = |∥A−1∥−1 − ∥B−1∥−1|

= |∥A−1∥ − ∥B−1∥| · 1

∥A−1∥∥B−1∥

≤ ∥A−1 −B−1∥ · 1

∥A−1∥∥B−1∥

= ∥B−1(B −A)A−1∥ · 1

∥A−1∥∥B−1∥

≤ ∥B−1∥∥A−B∥∥A−1∥ · 1

∥A−1∥∥B−1∥
= ∥A−B∥.

The first inequality follows from the triangle inequality, and the second inequality is from ∥CD∥ ≤
∥C∥∥D∥ for the spectral norm and square matrices C and D.

50



Proof of Theorem C.1. We have the following decomposition:

√
NbN

(
ÂSFt(xt)−ASFπ

t (xt)
)
=
√
NbN

(
1

N

N∑
i=1

(
ĥ1(x

′
tβ̂, Vi; β̂)− ĥ1(x

′
tβ̂, Vi;β0)

)
π̂it

)
(H.7)

+
√
NbN

(
1

N

N∑
i=1

(
ĥ1(x

′
tβ̂, Vi;β0)− ĥ1(x

′
tβ0, Vi;β0)

)
π̂it

)
(H.8)

+
√
NbN

(
1

N

N∑
i=1

ĥ1(x
′
tβ0, Vi;β0)(π̂it − πit)

)
(H.9)

+
√
NbN

(
1

N

N∑
i=1

ĥ1(x
′
tβ0, Vi;β0)πit − E[h1(x′tβ0, V ;β0)πt]

)
.

(H.10)

We break down the proof into four parts. In the first three parts, we show that terms (H.7)–(H.9)

are op(1). In the fourth and last part, we show that term (H.10) converges in distribution.

Part 1: Convergence of Term (H.7)

We have that

√
NbN ·

∣∣∣∣∣ 1N
N∑
i=1

(
ĥ1(x

′
tβ̂, Vi; β̂)− ĥ1(x

′
tβ̂, Vi;β0)

)
π̂it

∣∣∣∣∣
=
√
NbN ·

∣∣∣∣∣∣ 1N
N∑
j=1

e′1

(
SN (x′tβ̂, Vi; β̂)

−1TN (x′tβ̂, Vi; β̂)− SN (x′tβ̂, Vi;β0)
−1TN (x′tβ̂, Vi;β0)

)
π̂it

∣∣∣∣∣∣
=
√
NbN ·

∣∣∣∣∣∣ 1N
N∑
j=1

e′1

(
SN (x′tβ̂, Vi; β̂)

−1(TN (x′tβ̂, Vi; β̂)− TN (x′tβ̂, Vi;β0))

+SN (x′tβ̂, Vi; β̂)
−1
(
SN (x′tβ̂, Vi;β0)− SN (x′tβ̂, Vi; β̂)

)
SN (x′tβ̂, Vi;β0)

−1TN (x′tβ̂, Vi;β0)
)
1((x′tβ̂, Vi) ∈ Zt)

∣∣∣
≤
√
NbN · ∥e1∥ sup

z∈Zt

∥∥∥SN (z; β̂)−1
∥∥∥ sup
z∈Zt

∥∥∥TN (z; β̂)− TN (z;β0)
∥∥∥

+
√
NbN · ∥e1∥ sup

z∈Zt

∥∥∥SN (z; β̂)−1
∥∥∥ sup
z∈Zt

∥∥∥SN (z; β̂)− SN (z;β0)
∥∥∥ sup
z∈Zt

∥∥SN (z;β0)
−1
∥∥ sup
z∈Zt

∥TN (z;β0)∥ .

The terms in the previous expressions are of these asymptotic orders:

� ∥e1∥ = 1.

�

∥∥∥SN (z; β̂)−1
∥∥∥ = λmin

(
SN (z; β̂)

)−1
, where λmin(·) denotes the minimum eigenvalue of a sym-
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metric matrix. We have that

sup
z∈Zt

∣∣∣λmin

(
SN (z; β̂)

)
− λmin (S(z;β0))

∣∣∣ ≤ sup
z∈Zt

∥∥∥SN (z; β̂)− S(z;β0)
∥∥∥

≤ sup
z∈Zt

∥∥∥SN (z; β̂)− SN (z;β0)
∥∥∥+ sup

z∈Zt

∥SN (z;β0)− S(z;β0)∥

= op

(
1√
NbN

)
+Op

( log(N)

Nb1+dV
N

)1/2
+O(bN )

= op(1).

The first line follows from Lemma H.9. The second line follows from the triangle inequality.

The third line follows from Lemmas H.1 and H.2. The last line follows from B6. Also note

that

inf
z∈Zt

λmin (S(z;β0)) = inf
z∈Zt

fZt(z) · λmin

(∫
ξ(a)ξ(a)′K(a) da

)
> 0.

This follows from the definition of the set Zt, which is such that infz∈Zt fZt(z) > 0: see

B4.(ii).
∫
ξ(a)ξ(a)′K(a) da is positive definite since, for c ∈ RN̄ such that c ̸= 0,

c′
(∫

ξ(a)ξ(a)′K(a) da

)
c =

∫
(c′ξ(a))2K(a) da = 0

implies that c′ξ(a) = 0 for all a in the support of K(a). Since ξ(a) is comprised of products of

powers of components of a, c′ξ(a) = 0 over this entire support implies c = 0, a contradiction.

Therefore λmin

(∫
ξ(a)ξ(a)′K(a) da

)
> 0 and infz∈Zt λmin (S(z;β0)) > 0.

This implies that,

sup
z∈Zt

∥∥∥SN (z; β̂)−1
∥∥∥ =

1

infz∈Zt λmin

(
SN (z; β̂)

)
≤ 1

infz∈Zt λmin (S(z;β0))− supz∈Zt

∣∣∣λmin

(
SN (z; β̂)

)
− λmin (S(z;β0))

∣∣∣
=

1

infz∈Zt λmin (S(z;β0))− op(1)

= Op(1).

� By Lemma H.1, we have that supz∈Zt

∥∥∥SN (z; β̂)− SN (z;β0)
∥∥∥ = op

(
1√
NbN

)
.

� By Lemma H.3, we have that supz∈Zt

∥∥∥TN (z; β̂)− TN (z;β0)
∥∥∥ = op

(
1√
NbN

)
� As above, we have that supz∈Zt

∥∥SN (z;β0)
−1
∥∥ = Op(1).
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� We have that

sup
z∈Zt

∥TN (z;β0)∥ ≤ sup
z∈Zt

∥TN (z;β0)− T (z;β0)∥+ sup
z∈Zt

∥T (z;β0)∥

where

sup
z∈Zt

∥TN (z;β0)− T (z;β0)∥ = Op

( log(N)

Nb1+dV
N

)1/2
+O(bN )

by Lemma H.4. We also have that

sup
z∈Zt

∥T (z;β0)∥ = sup
z∈Zt

|E[Yt|Zt = z]fZt(z)| ·
∥∥∥∥∫ ξ(a)K(a) da

∥∥∥∥
≤ 1 · sup

z∈Zt

fZt(z) ·O(1)

= O(1)

by supz∈Zt
fZt(z) < ∞ (Assumption B4.(iii)), and by

∥∥∫ ξ(a)K(a) da
∥∥ < ∞ (Assumption

B3). Therefore,

sup
z∈Zt

∥TN (z;β0)∥ = Op

( log(N)

Nb1+dV
N

)1/2
+O(bN ) +O(1)

= Op(1),

by B6.

Combining the asymptotic orders of the above six terms, we have

√
NbN ·

∣∣∣∣∣ 1N
N∑
i=1

(
ĥ1(x

′
tβ̂, Vi; β̂)− ĥ1(x

′
tβ̂, Vi;β0)

)
π̂it

∣∣∣∣∣ ≤√NbN ·Op(1) · op
(

1√
NbN

)
+
√
NbN ·Op(1) · op

(
1√
NbN

)
·Op(1) ·Op(1)

= op(1).

Part 2: Convergence of Term (H.8)
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We have that∣∣∣∣∣ 1N
N∑
i=1

(
ĥ1(x

′
tβ̂, Vi;β0)− ĥ1(x

′
tβ0, Vi;β0)

)
π̂it

∣∣∣∣∣
=

∣∣∣∣∣∣ 1N
N∑
j=1

e′1

(
SN (x′tβ̂, Vi;β0)

−1TN (x′tβ̂, Vi;β0)− SN (x′tβ0, Vi;β0)
−1TN (x′tβ0, Vi;β0)

)
π̂it

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1N
N∑
j=1

e′1

(
SN (x′tβ̂, Vi;β0)

−1(TN (x′tβ̂, Vi;β0)− TN (x′tβ0, Vi;β0))

+SN (x′tβ̂, Vi;β0)
−1
(
SN (x′tβ0, Vi;β0)− SN (x′tβ̂, Vi;β0)

)
SN (x′tβ0, Vi;β0)

−1TN (x′tβ0, Vi;β0)
)
π̂it

∣∣∣
≤ ∥e1∥ sup

z∈Zt

∥∥SN (z;β0)
−1
∥∥ sup
z∈Zt

∥∥∥∥ ∂∂uTN (z;β0)

∥∥∥∥∥∥∥x′tβ̂ − x′tβ0

∥∥∥
+ ∥e1∥ sup

z∈Zt

∥∥SN (z;β0)
−1
∥∥ sup
z∈Zt

∥∥∥∥ ∂∂uSN (z;β0)

∥∥∥∥∥∥∥x′tβ̂ − x′tβ0

∥∥∥ sup
z∈Zt

∥∥SN (z;β0)
−1
∥∥ sup
z∈Zt

∥TN (z;β0)∥ .

(H.11)

The inequality follows from applications of the mean-value theorem and the Cauchy-Schwarz in-

equality. By Lemmas H.3 and H.5,

sup
z∈Zt

∥∥∥∥ ∂∂uSN (z;β0)

∥∥∥∥ = op

(
aN√
NbN

)
sup
z∈Zt

∥∥∥∥ ∂∂uTN (z;β0)

∥∥∥∥ = op

(
aN√
NbN

)
.

By B2, ∥x′tβ̂ − x′tβ0∥ ≤ ∥xt∥∥β̂ − β0∥ = Op(a
−1
N ). The asymptotic order of all other terms in

equation (H.11) were characterized in the analysis of the convergence of term (H.7). Therefore

√
NbN ·

∣∣∣∣∣ 1N
N∑
i=1

(
ĥ1(x

′
tβ̂, Vi;β0)− ĥ1(x

′
tβ0, Vi;β0)

)
π̂it

∣∣∣∣∣
=
√
NbN ·Op(1) · op

(
aN√
NbN

)
·Op(a

−1
N ) +

√
NbN ·Op(1) · op

(
aN√
NbN

)
·Op(a

−1
N ) ·Op(1) ·Op(1)

= op(1).

Part 3: Convergence of Term (H.9)

First note that∣∣∣∣∣ 1N
N∑
i=1

ĥ1(x
′
tβ0, Vi;β0)(π̂it − πit)

∣∣∣∣∣ ≤ 1

N

N∑
i=1

∣∣∣ĥ1(x′tβ0, Vi;β0)∣∣∣ · sup
i=1,...,N

|π̂it − πit| .
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Therefore

P

(√
NbN

∣∣∣∣∣ 1N
N∑
i=1

ĥ1(x
′
tβ0, Vi;β0)(π̂it − πit)

∣∣∣∣∣ = 0

)

≥ P

(
1

N

N∑
i=1

∣∣∣ĥ1(x′tβ0, Vi;β0)∣∣∣ · sup
i=1,...,N

|π̂it − πit| = 0

)

≥ P

(
sup

i=1,...,N
|π̂it − πit| = 0

)
→ 1

as N → ∞ by Lemma H.7. Therefore

√
NbN

∣∣∣∣∣ 1N
N∑
i=1

ĥ1(x
′
tβ0, Vi;β0)(π̂it − πit)

∣∣∣∣∣ = op(1)

Part 4: Convergence of Term (H.10)

By Lemma H.8, this term converges in distribution:

√
NbN

(
1

N

N∑
i=1

ĥ1(x
′
tβ0, Vi;β0)πit − E[h1(x′tβ0, V ;β0)πt]

)
d−→ N (0, σ2ASFt

(x′tβ0)).

The conclusion follows from an application of Slutsky’s Theorem.

Lemma H.10 (APE convergence in distribution). Suppose B1–B6 hold. Then,

√
Nb3N

(
1

N

N∑
i=1

ĥ2(x
′
tβ0, Vi;β0)πit − E[h2(x′tβ0, V ;β0)πt]

)
d−→ N (0, σ2APEt

(x′tβ0)).

Proof of Lemma H.10. This proof builds on that of Corollary 2 in KLX and our Lemma H.8. Recall

that Assumptions A1–A7 of KLX hold under ours. We can then use equation (13) in KLX and

their Corollary 1 to write

bN ĥ2(z;β0) = bNh2(z;β0) +B2,N (z) +
1

N

N∑
j=1

ϕ2,jN (z) +R2,N (z)

= e′2+dV
h(z;β0) +B2,N (z) +

1

N

N∑
j=1

ϕ2,jN (z) +R2,N (z),

where B2,N (z) is a bias term satisfying supz∈Zt
|B2,N (z)| = O(bℓ+1

N ) if ℓ is odd or O(bℓ+2
N ) if ℓ is

even, where ϕ2,jN (z) are mean-zero random variables, and where R2,N (z) is a higher-order term
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satisfying supz∈Zt
|R2,N (z)| = Op

(
log(N)

Nb
1+dV
N

)
.

Second, note that

√
Nb3N

(
1

N

N∑
i=1

ĥ2(x
′
tβ0, Vi;β0)πit − E[h2(x′tβ0, V ;β0)πt]

)

=
√
Nb3N

1

N

N∑
i=1

(
ĥ2(x

′
tβ0, Vi;β0)− h2(x

′
tβ0, Vi;β0)

)
πit (H.12)

+
√
b3N · 1√

N

N∑
i=1

(
h2(x

′
tβ0, Vi;β0)πit − E[h2(x′tβ0, V ;β0)πt]

)
(H.13)

To analyze term (H.12), we use the fact that

√
Nb3N

1

N

N∑
i=1

(
ĥ2(x

′
tβ0, Vi;β0)− h2(x

′
tβ0, Vi;β0)

)
πit

=
√
NbN

1

N

N∑
i=1

e′2+dV

(
ĥ(x′tβ0, Vi;β0)− h(x′tβ0, Vi;β0)

)
πit

=
√
NbN

1

N

N∑
i=1

B2,N (x′tβ0, Vi)πit +
√
NbN

1

N2

N∑
i=1

N∑
j=1

ϕ2,jN (x′tβ0, Vi)πit +
√
NbN

1

N

N∑
i=1

R2,N (x′tβ0, Vi)πit.

The terms
√
NbN

1
N

∑N
i=1B2,N (x′tβ0, Vi)πit and

√
NbN

1
N

∑N
i=1R2,N (x′tβ0, Vi)πit are op(1) from

the same arguments used in the proof of Lemma H.8.

The term
√
NbN

1
N2

∑N
i=1

∑N
j=1 ϕ2,jN (x′tβ0, Vi)πit converges in distribution to

√
NbN

1

N2

N∑
i=1

N∑
j=1

ϕ2,jN (x′tβ0, Vi)πit
d−→ N (0, σ2APEt

(x′tβ0))

by standard arguments from Masry (1996) referred to in the proof of Corollary 2 in KLX.

Term (H.13) above is of order Op(b
3/2
N ) = op(1) by an application of the central limit theorem.

Therefore,

√
Nb3N

(
1

N

N∑
i=1

ĥ2(x
′
tβ0, Vi;β0)πit − E[h2(x′tβ0, V ;β0)πt]

)
=
√
NbN

1

N2

N∑
i=1

N∑
j=1

ϕ2,jN (x′tβ0, Vi)πit + op(1)

d−→ N (0, σ2APEt
(x′tβ0)).
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Proof of Theorem C.2. First, we write√
Nb3N

(
ÂPEk,t(xt)−APEπ

k,t(xt)
)

= β̂(k) ·
√
Nb3N

(
1

N

N∑
i=1

(
ĥ2(x

′
tβ̂, Vi; β̂)− ĥ2(x

′
tβ̂, Vi;β0)

)
π̂it

)
(H.14)

+ β̂(k) ·
√
Nb3N

(
1

N

N∑
i=1

(
ĥ2(x

′
tβ̂, Vi;β0)− ĥ2(x

′
tβ0, Vi;β0)

)
π̂it

)
(H.15)

+ β̂(k) ·
√
Nb3N

(
1

N

N∑
i=1

ĥ2(x
′
tβ0, Vi;β0)(π̂it − πit)

)
(H.16)

+ β̂(k) ·
√
Nb3N

(
1

N

N∑
i=1

ĥ2(x
′
tβ0, Vi;β0)πit − E[h2(x′tβ0, V ;β0)πt]

)
(H.17)

+
√
Nb3N (β̂(k) − β

(k)
0 ) · E[h2(x′tβ0, V ;β0)πt]. (H.18)

We will show that terms (H.14)–(H.16) and (H.18) are op(1), and that term (H.17) converges

in distribution.

Convergence of Term (H.14)

Note that

√
Nb3N ·

∣∣∣∣∣ 1N
N∑
i=1

(
ĥ2(x

′
tβ̂, Vi; β̂)− ĥ2(x

′
tβ̂, Vi;β0)

)
π̂it

∣∣∣∣∣
=
√
NbN ·

∣∣∣∣∣ 1N
N∑
i=1

e′2+dV

(
SN (x′tβ̂, Vi; β̂)

−1TN (x′tβ̂, Vi; β̂)− SN (x′tβ̂, Vi;β0)
−1TN (x′tβ̂, Vi;β0)

)
π̂it

∣∣∣∣∣
by the definition of ĥ2. Also note that β̂(k) = Op(1). Therefore, we can follow the same steps used

in the proof of Theorem C.1 to show term (H.7) is op(1).

Convergence of Term (H.15)

We have that

√
Nb3N ·

∣∣∣∣∣β̂(k) 1N
N∑
i=1

(
ĥ2(x

′
tβ̂, Vi;β0)− ĥ2(x

′
tβ0, Vi;β0)

)
π̂it

∣∣∣∣∣
=
∣∣∣β̂(k)∣∣∣ ·√NbN

·

∣∣∣∣∣ 1N
N∑
i=1

e′2+dV

(
SN (x′tβ̂, Vi;β0)

−1TN (x′tβ̂, Vi;β0)− SN (x′tβ0, Vi;β0)
−1TN (x′tβ0, Vi;β0)

)
π̂it

∣∣∣∣∣ .
Again, we can follow the same steps used in the proof of Theorem C.1 to show term (H.8) is
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op(1).

Convergence of Term (H.16)

The convergence of this term is shown identically to that of term (H.9).

Convergence of Term (H.17)

By Lemma H.10, we have that
√
Nb3N

(
1
N

∑N
i=1 ĥ2(x

′
tβ0, Vi;β0)πit − E[h2(x′tβ0, V ;β0)πt]

)
d−→

N (0, σ2APEt
(x′tβ0)). By B2, β̂(k)

p−→ β
(k)
0 . Therefore, by Slutsky’s Theorem, term (H.17) converges

in distribution to a mean-zero Gaussian distribution with variance (β
(k)
0 )2 · σ2APEt

(x′tβ0).

Convergence of Term (H.18)

Note that E[h2(x′tβ0, V ;β0)πt] = O(1). Term (H.18) is of order
√
Nb3N (β̂(k) − β

(k)
0 ) · O(1) =

Op

(√
Nb3Na

−1
N

)
. By B2, the order of this term is

Op

(
N

1
2
(1−3δ−2ϵ)

)
= op(1).

This equality follows from δ > 1−2ϵ
3 , which can be seen from δ > 1− 2ϵ and δ > 0: see B6.

Combining the convergence of terms (H.14)–(H.18) with Slutsky’s Theorem, we obtain our

result.

H.2 Proofs for Appendix E

Proof of Theorem E.1. This proof is similar to the proofs of Theorems 2.1 and 2.2 in the main

paper. For the ASF, note that

ASFt(xt) = E[gt(x′tβ0, C, Ut)]

=

∫
supp(V t)

E[gt(x′tβ0, C, Ut)|V t = vt] dFV t(vt)

=

∫
supp(V t|X′

tβ0=x′
tβ0)

E[gt(x′tβ0, C, Ut)|V t = vt] dFV t(vt)

=

∫
supp(V t|X′

tβ0=x′
tβ0)

E[gt(x′tβ0, C, Ut)|X ′
tβ0 = x′tβ0, V

t = vt] dFV t(vt)

=

∫
supp(V t|X′

tβ0=x′
tβ0)

E[Yt|X ′
tβ0 = x′tβ0, V

t = vt] dFV t(vt).

The second equality follows from the law of iterated expectations. The third follows from the

support condition. The fourth follows from (C,Ut) ⊥⊥ X ′
tβ0|V t, which can be shown similarly to

step 1 in the proof of Theorem 2.1. Note that Ut ⊥⊥ X ′
tβ0|C, V t is implied by Ut ⊥⊥ (Xexog,X

t
pre)|C

and by X ′
tβ0 being a function of (Xexog,X

t
pre). Also note that C ⊥⊥ X ′

tβ0|V t, which follows from

C ⊥⊥ (Xexog,X
t
pre)|V t and fromX ′

tβ0 being a function of (Xexog,X
t
pre). The last line follows directly.
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Finally, the last expression is identified from the distribution of (Y,X) using similar arguments as

before.

Proofs for the identification of the APE, LAR, and AME proceed similarly.
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Honoré, B. E., and A. Lewbel (2002): “Semiparametric Binary Choice Panel Data Models
without Strictly Exogeneous Regressors,” Econometrica, 70(5), 2053–2063.
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