
Panel Forecasts of Country-Level Covid-19

Infections

Laura Liu

Indiana University

Hyungsik Roger Moon

University of Southern California,
Schaeffer Center, and Yonsei University

Frank Schorfheide∗

University of Pennsylvania
CEPR, NBER, and PIER

Abstract

We use a dynamic panel data model to generate density forecasts for daily ac-

tive Covid-19 infections for a panel of countries/regions. Our specification that as-

sumes the growth rate of active infections can be represented by autoregressive fluc-

tuations around a downward sloping deterministic trend function with a break. Our

fully Bayesian approach allows us to flexibly estimate the cross-sectional distribution

of slopes and then implicitly use this distribution as prior to construct Bayes forecasts

for the individual time series. We find some evidence that information from locations

with an early outbreak can sharpen forecast accuracy for late locations. There is gen-

erally a lot of uncertainty about the evolution of active infection, due to parameter

and shock uncertainty, in particular before and around the peak of the infection path.

Over a one-week horizon, the empirical coverage frequency of our interval forecasts is

close to the nominal credible level. Weekly forecasts from our model are published at

https://laurayuliu.com/covid19-panel-forecast/.

JEL CLASSIFICATION: C11, C23, C53

KEY WORDS: Bayesian inference, Covid-19, density forecasts, interval forecasts, panel data

models, random effects, SIR model.

∗This version: August 21, 2020. Correspondence: L. Liu: Department of Economics, Indiana University,

100 S. Woodlawn Ave, Bloomington, IN 47405. Email: lauraliu@iu.edu. H.R. Moon: Department of

Economics, University of Southern California, KAP 300, Los Angeles, CA 90089. E-mail: moonr@usc.edu.

F. Schorfheide: Department of Economics, 133 S. 36th Street, University of Pennsylvania, Philadelphia, PA

19104-6297. Email: schorf@ssc.upenn.edu. We thank Elie Tamer (co-editor), the anonymous referee, and

participants at the 26th IIF workshop on Economic Forecasting in Times of COVID-19 and the NBER-NSF

Seminar on Bayesian Inference in Econometrics and Statistics for helpful comments and suggestions. We

also thank the Johns Hopkins University Center for Systems Science and Engineering for making Covid-19

data publicly available on Github and Evan Chan for his help developing the website on which we publish

our forecasts. Moon and Schorfheide gratefully acknowledge financial support from the National Science

Foundation under Grants SES 1625586 and SES 1424843, respectively. Moon thanks Drs. S. Kim, C. Moon,

and H. Song of GemVax & KAEL for helpful conversations on Covid-19 related topics.



This Version: August 21, 2020 1

1 Introduction

This paper contributes to the rapidly growing literature on generating forecasts related to

the current Covid-19 pandemic. We are adapting forecasting techniques for panel data that

we have recently developed for economic applications such as the prediction of bank profits,

charge-off rates, and the growth (in terms of employment) of young firms; see Liu (2020),

Liu, Moon, and Schorfheide (2020), and Liu, Moon, and Schorfheide (2019). We focus

on the prediction of the smoothed daily number of active Covid-19 infections for a cross-

section of approximately one hundred countries/regions, henceforth locations. The data are

obtained from the Center for Systems Science and Engineering (CSSE) at Johns Hopkins

University. While we are currently focusing on country-level aggregates, our model could be

easily modified to accommodate, say, state- or county-level data.

In economics, researchers distinguish, broadly speaking, between reduced-form and struc-

tural models. A reduced-form model summarizes spatial and temporal correlation structures

among economic variables and can be used for predictive purposes assuming that the behav-

ior of economic agents and policy makers over the prediction period is similar to the behavior

during the estimation period. A structural model, on the other hand, attempts to identify

causal relationships or parameters that characterize policy-invariant preferences of economic

agents and production technologies. Structural economic models can be used to assess the

effects of counterfactual policies during the estimation period or over the out-of-sample fore-

casting horizon.

The panel data model developed in this paper to generate forecasts of Covid-19 infec-

tions is a reduced-form model. It processes cross-sectional and time-series information about

past infection levels and maps them into predictions of future infections. While the model

specification is motivated by the time-path of infections generated by the workhorse com-

partmental model in the epidemiology literature, the so-called susceptible-infected-recovered

(SIR) model, it is not designed to answer quantitative policy questions, e.g., about the impact

of social-distancing measures on the path of future infection rates.

Building on a long tradition of econometric modeling dating back to Haavelmo (1944),

our model is probabilistic. The growth rates of the infections are decomposed into a deter-

ministic component which approximates the path predicted by a deterministic SIR model

and a stochastic component that could be interpreted as either time-variation in the coef-

ficients of an epidemiological model or deviations from such a model. We report interval

and density forecasts of future infections that reflect two types of uncertainty: uncertainty
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about model parameters and uncertainty about future shocks. We model the growth rate

of active infections as autoregressive fluctuations around a deterministic trend function that

is piecewise linear. The coefficients of this deterministic trend function are allowed to be

heterogeneous across locations. The goal is not curve fitting – our model is distinctly less

flexible in samples than some other models – but rather out-of-sample forecasts, which is why

we prefer to project growth rates based on autoregressive fluctuations around a parsimonious

linear time trend with a single break.

A key feature of the Covid-19 pandemic is that the outbreaks did not take place simul-

taneously in all locations. Thus, we can potentially learn from the speed of the spread of

the disease and subsequent containment in country A, to make forecasts of what is likely

to happen in country B, while simultaneously allowing for some heterogeneity across loca-

tions. In a panel data setting, one captures cross-sectional heterogeneity in the data with

unit-specific parameters. The more precisely these heterogeneous coefficients are estimated,

the more accurate are the forecasts. A natural way of disciplining the model is to assume

that the heterogeneous coefficients are “drawn” from a common probability distribution. If

this distribution has a large variance, then there is a lot of country-level heterogeneity in

the evolution of Covid-19 infections. If instead, the distribution has a small variance, then

the path of infections will be very similar across samples, and we can learn a lot from, say,

China, that is relevant for predicting the path of the disease in South Korea or Germany.

Formally, the cross-sectional distribution of coefficients can be used as a so-called a pri-

ori distribution (prior) when making inference about country-specific coefficients. Using

Bayesian inference, we combine the prior distribution with the unit-specific likelihood func-

tions to compute a posteriori (posterior) distributions. This posterior distribution can then

be used to generate density forecasts of future infections. Unfortunately, the cross-sectional

distribution of heterogeneous coefficients is unknown. The key insight in the literature on

Bayesian estimation of panel data models is that this distribution, which is called random

effects (RE) distribution in the panel data model literature, can be extracted through si-

multaneous estimation from the cross-sectional dimension of the panel data set. There are

several ways of implementing this basic idea.

In this paper we will engage in a full Bayesian analysis by specifying a hyperprior for

the distribution of heterogeneous coefficients and then constructing a joint posterior for the

coefficients of this hyperprior as well as the actual unit-specific coefficients. Based on the

posterior distribution, we simulate our panel model forward to generate density forecasts that
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reflect parameter uncertainty as well as uncertainty about shocks that capture deviations

from the deterministic component of our forecasting model.

Our empirical analysis makes the following contributions. First, we present estimates

of the RE distribution as well as the distribution of location-specific coefficient estimates.

Second, we document how density forecasts from our model have evolved over time, focusing

on the forecasts for three countries in which the level of infections peaked at different points

in time: South Korea, Germany, and the U.S. Due to the exponential transformation from

growth rates to levels, density forecasts can feature substantial tail risk by assigning non-

trivial probability to very high infection levels which materialized in the U.S. but not in

Germany and South Korea.

Third, we evaluate one-week and four-week ahead density forecasts based on the con-

tinuous ranked probability score and interval forecasts based on cross-sectional coverage

frequency and average length. In addition to forecasts from our panel data model, we also

consider forecasts based on location-level time series estimates of our trend-break model and

a simple SIR model.

Once we decompose the set of locations into those that experienced the Covid-19 outbreak

early (prior to 2020-03-28) and those that experience the outbreak later on, then we find

some evidence that for the late group the panel density forecasts are more accurate than the

time-series forecasts. However, because of the substantial heterogeneity in our panel and the

poor data quality for some countries, the empirical evidence in favor of the panel approach

is not as tidy as the simulation evidenced provided in the Monte Carlo section of this paper.

Over time, in particular after the infection level has peaked and started to fall, forecast

accuracy increases. The timing of the peak appears to be very difficult to forecast. Prior

to the middle of May the panel and time-series forecasts from our trend-break model are

substantially more accurate than the forecasts from a simple time-varying coefficient SIR

model. For subsequent forecast origins, the accuracy across the three forecasting procedures

becomes much more similar. Weekly real-time forecasts are published on the companion

website https://laurayuliu.com/covid19-panel-forecast/.

In terms of interval forecasts we find that over a one-week horizon the empirical coverage

frequency of the trend-break model forecasts is close to the nominal coverage level based

on which the forecasts were constructed. Moreover, in April and May, the average interval

lengths of the panel model forecasts are slightly smaller than the time-series intervals. At
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the four-week horizon the coverage frequency is considerably smaller than the nominal level

and it deteriorates further for longer horizons.

This paper is connected to several strands of the literature. The panel data forecasting

approach is closely related to work by Gu and Koenker (2017a,b) and our own work in Liu

(2020), Liu, Moon, and Schorfheide (2020), Liu, Moon, and Schorfheide (2019). All five

papers focus on the estimation of the heterogeneous coefficients in panel data models. The

forecasting model for the Covid-19 infections is based on the alternative parametric model

considered in Liu (2020) and tailored to the specifics of the Covid-19 pandemic. The approach

has several desirable theoretical properties. For instance, Liu, Moon, and Schorfheide (2020),

building on Brown and Greenshtein (2009), show that an empirical Bayes implementation

of the forecasting approach based on Tweedie’s formula can asymptotically (as the cross-

sectional dimension tends to infinity) lead to forecasts that are as accurate as the so-called

oracle forecasts. Here the oracle forecast is an infeasible benchmark that assumes that the

distribution of the heterogeneous coefficients is known to the forecaster. Liu (2020) shows

that the density forecast obtained from the full Bayesian analysis converges strongly to the

oracle’s density forecast as the cross-section gets large.

The piecewise linear conditional mean function for the infection growth rate resembles

a spline; see de Boor (1990) for an introduction to spline approximation. Unlike a typical

spline approximation in which the knot locations are free parameters and some continuity

of smoothness restrictions are imposed, the knot placement in our setting is closely tied to

the first component of the spline, and we do not impose continuity. Our model could be

generalized by adding additional knots in the deterministic trend component of infection

growth rates, but the extension is not pursued in this paper. Other authors have explored

alternative forms of nonlinearity which are often tied to the object that is being modeled, e.g.,

active infections, cumulative infections, new infections, deaths. For instance, Li and Linton

(2020) model the logarithm of country-level new infections and new deaths via a quadratic

trend, using rolling samples. Ho, Lubik, and Matthes (2020) model the cumulative number

of infections using a very flexible nonlinear parametric function.

An important aspect of our modeling framework is that the panel model is specified

in event time, i.e., time since the level of infections in a particular location exceeds 100.

The forecasts, however, are generated based on calendar time. This allows us to sharpen

forecasts for countries/regions that experienced an outbreak at a late stage (in terms of

calendar time), based on information from locations with an early outbreak. This idea
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is also utilized by Larson and Sinclair (2020) who use state-level panel data to nowcast

unemployment insurance claims during Covid-19.

A growing number of researchers with backgrounds in epidemiology, biostatistics, ma-

chine learning, economics, and econometrics are engaged in forecasting aspects of the Covid-

19 pandemic. Because this is a rapidly expanding and diverse field, we do not attempt to

provide a meaningful survey at this moment. Instead, we simply provide a few pointers.

Forecasts are reported in the abovementioned papers by Li and Linton (2020) and Ho, Lu-

bik, and Matthes (2020). The paper by Avery, Bossert, Clark, Ellison, and Fisher Ellison

(2020) cites a compilation of publicly available simulation models in footnote 15. The Cen-

ter for Disease Control (CDC) publishes forecasts from several different models and Nicholas

Reich created a website that combines Covid-19 forecasts from a variety of models. Murray

(2020) and his team from the Institute for Health Metrics and Evaluation (IHME) publish

forecasts for Covid-19 related hospital demands and deaths. Fernandez-Villaverde and Jones

(2020) generate forecasts from a variant of the SIR model. Other forecasts are published

by the Georgia State University School of Public Health and independent data analysts,

e.g., Youyang Gu. URLs to websites from which the forecasts are available are listed in the

Online Appendix.

The remainder of this paper is organized as follows. Section 2 provides a brief survey of

epidemiological models with a particular emphasis on the SIR model. The specification of

our panel data model is presented in Section 3. Section 4 contains a small-scale Monte Carlo

study and the empirical analysis is conducted in Section 5. Finally, Section 6 concludes.

2 Modeling Epidemics

There is a long history of modeling epidemics. A recent survey of modeling approaches is

provided by Bertozzi, Franco, Mohler, Short, and Sledge (2020). The authors distinguish

three types of macroscopic models:1 (i) the exponential growth model; (ii) self-exciting point

processes / branching processes; (iii) compartmental models, most notably the SIR model

that divides a population into susceptible (St), infected (It), and resistant (Rt) individu-

als. Our subsequent discussion will focus on the exponential growth model and the SIR

model. While epidemiological models are often specified in continuous time, we will con-

1As opposed to micro-simulation or agent-based models.
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sider a discrete-time specification in this paper because it is more convenient for econometric

inference.

The exponential model takes the form It = I0 exp(γ0t). The number of infected indi-

viduals will grow exponentially at the constant rate γ0. This is a reasonable assumption to

describe the outbreak of a disease, but not the subsequent dynamics because the growth rate

will typically fall over time and eventually turn negative as more and more people become

resistant to the disease. The SIR model dates back to Kermack and McKendrick (1927). In

its most elementary version it can be written in discrete-time as follows:

St = St−1 − βSt−1(It−1/N) (1)

It = It−1 + βSt−1(It−1/N) − γIt−1

Rt = Rt−1 + γIt−1,

where N is the (fixed) size of the population, β is the average number of contacts per person

per time, and γ is the rate of recovery or mortality. The model could be made stochastic by

assuming that β and γ vary over time, e.g.,

ln βt = (1 − ρβ) ln β + ρβ ln βt−1 + εβ,t, ln γt = (1 − ργ) ln γ + ργ ln γt−1 + εγ,t. (2)

In response to the recent Covid-19 pandemic, several introductory treatments of SIR mod-

els have been written for economists, e.g., Avery, Bossert, Clark, Ellison, and Fisher Ellison

(2020) and Stock (2020). Moreover, there is a growing literature that combines compart-

mental models with economic components. In these models, economic agents account for the

possibility of contracting a disease when making their decisions about market participation.

This creates a link between infection rates and economic activity through the frequency of

interactions. Examples of this work in macroeconomics include Eichenbaum, Rebelo, and

Trabandt (2020), Glover, Heathcote, Krueger, and Rios-Rull (2020), and Krueger, Uhlig,

and Xie (2020). The advantage of models that link health status to economic activity is that

they can be used to assess the economic impact of, say, social distancing measures.

We now simulate the constant-coefficient SIR model in (1) under two different parame-

terizations for (β, γ) that are unrelated to the current Covid-19 pandemic. The top panels

of Figure 1 depict hypothetical time paths of St, It, and Rt. The size of the population is

normalized to N = 100 and the outbreak of the disease is triggered by the initial condition

[S0, I0, R0] = [97, 3, 0].
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Figure 1: SIR Model Simulations

β = 0.15 and γ = 0.02 β = 0.06 and γ = 0.04

Levels of St (black dotted), It (orange solid), and Rt (teal dashed)

Growth rate 100 ∙ ln(It/It−1), actual (black dashed) and fitted (colored solid)

Notes: We normalize the size of the population to N = 100 and set the initial conditions to S0 = 97, I0 = 3,
and R0 = 0.

Under the first parameterization (left panels), the transmission rate β = 0.15 is very high

and the recovery rate γ = 0.02 is relatively small. This leads to a fast rise in the number of

infected individuals, which peaks at It∗ ≈ 60 in period t∗ ≈ 50. After the peak, the number

of infections decreases, but more slowly than it increased during the initial outbreak. The

bottom left panel shows the growth rate of the infections 100 ∙ ln(It/It−1) implied by the SIR
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model. It is a monotonically decreasing function of time that we approximate by fitting a

piecewise linear least-squares regression line with a break point at t∗ which is the point in

time when the infections peak and the growth rate transitions from being positive to being

negative. Under the second parameterization the transmission rate β = 0.06 is much lower

and the recovery rate is slightly faster. This leads to an almost bell-curve shaped path of

infections. While the resulting growth rate of the infections is not exactly a linear function

of time t, the break at t∗ is much less pronounced. While the piecewise-linear regression

functions do not fit perfectly, they capture the general time-dependence of the growth-rate

path implied by the SIR model. In particular, they allow for a potentially much slower

change in the growth rate of infections after the peak.

We use these simulations as a motivation for the subsequent specification of our empirical

model.2 This model assumes that the growth rate of infections is a decreasing piecewise-

linear function of time with a break when the growth rates cross zero and the infections

peak. This deterministic component is augmented by a stochastic component that follows a

first-order autoregressive, AR(1), process. We refer to the model as trend-break model. We

will revisit a stochastic version of the SIR model that comprises (1) and (2) in Section 5.4

where we compare its forecasts to the proposed trend-break model.

3 A Bayesian Panel Data Model

We now describe our empirical model in more detail. We begin with the specification of

a regression model for the growth rate of infections in Section 3.1. Our model features

location-specific regression coefficients and heteroskedasticity. The prior distribution for the

Bayesian analysis is summarized in Section 3.2. Posterior inference is implemented through

a Gibbs sampler that is outlined in Section 3.3. Further computational details are provided

through replication files on the companion webpage. The algorithm to obtain simulated

infection paths from the posterior predictive distribution is outlined in Section 3.4.

2For forecasts generated directly from an enriched version of the SIR model see, for instance, Fernandez-
Villaverde and Jones (2020).
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3.1 Panel Regression Specification

We specify a panel data model for infection growth rates yit = Δ ln Iit, i = 1, . . . , N and

t = 1, . . . , T . We assume that

yit = γ′
ixt + δ′ixtI{t > t∗i } + uit, uit = ρuit−1 + εit, εit ∼ N(0, σ2

i ), (3)

where γi = [γ0i, γ1i]
′ is a 2 × 1 vector of heterogeneous coefficients and xt = [1, t]′. I{t > t∗}

is the indicator function that is equal to one if t > t∗i and zero if t ≤ t∗i . The 2 × 1 vector

δi = [δ0i, δ1i]
′ captures the size of the break in the regression coefficients at t = t∗i . The

deterministic part of yit corresponds to the piecewise-linear regression functions fitted to the

infection growth paths simulated from the SIR in Figure 1.

The serially-correlated process uit generates stochastic deviations from the deterministic

path γ′
ixt of the infection growth rate. The uit shocks may capture time variation in the

(β, γ) parameters of the SIR model or, alternatively, model misspecification. In Section 2

the break point t∗i was given by the peak of the infection path. Abstracting from a potential

discontinuity at the kink, we define t∗i as

t∗i = −γ0i/γ1i, (4)

which implies that E[yit|t = t∗i ] = 0. Because of the AR(1) process uit, t∗i is not the peak of

the observed sample path, nor is it an unbiased or consistent estimate of the period in which

the infections peak. For δi = 0, the model reduces to

yit = γ′
ixt + uit, (5)

Note that the break date t∗i is identified in this model even if δi = 0, because we assume the

break occurs when the deterministic component of the growth rate falls below zero.

To construct a likelihood function we define the quasi-difference operator Δ ρ = 1 − ρL

such that Δρuit = εit. Thus, we can rewrite (3) as follows

yit = ρyit−1 + γ′
iΔρxt + δ′iΔρxtI{t > t∗i } + εit. (6)

Now let λi = [γ′
i, δi]

′ and nλ be the dimension of λ. The parameters of the panel data model

are (ρ, λ1:N , σ2
1:N ). Here, we use the notation Z1:L to denote the sequence z1, . . . , zL. Using

this notation, we denote the panel observations by Y1:N,1:T . We will subsequently condition
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on Y1:N,0 to initialize conditional likelihood function. Finally, from the growth-rates yit we

can easily recover the level of active infections as

Iit = Ii0 exp

[
t∑

τ=1

yiτ

]

. (7)

3.2 Prior Distribution

To conduct Bayesian inference, we need to specify a prior distribution for (ρ, λ1:N , σ2
1:N ). We

do so conditional on a vector of hyperparameters ξ that do not enter the likelihood function.

Our prior distribution has the following factorization:

p
(
ρ, λ1:N , σ2

1:N , ξ
)
∝ p(ρ)

(
N∏

i=1

p(λi|ξ)f(λi)

)(
N∏

i=1

p(σ2
i |ξ)

)

p(ξ), (8)

where ∝ denotes proportionality and f(∙) is an indicator function that we will use to impose

the following sign restrictions on the elements of λi:

f(λi) = I{γ1i < 0} ∙ I{δ0i < 0} ∙ I{δ1i > 0} ∙ I{γ1i + δ1i < 0}.

The restriction γ1i < 0 ensures that the growth rates are falling over time. After the break

point the rate of decline decreases (δ1i > 0), but stays negative (γ1i + δ1i < 0). In addition

we assume that the decrease in the rate of decline is associated with a downward shift, i.e.,

δ0i < 0, of the intercept as shown in the SIR simulation.

Because of the presence of the indicator function f(∙) the right-hand side of (8) is not

a properly normalized density. In view of the indicator function f(∙) we define the RE

distribution of λi given ξ as

π(λi|ξ) =
1

C(ξ)
p(λi|ξ)f(λi), C(ξ) =

∫
p(λi|ξ)f(λi)λi. (9)

In turn, the marginal prior distribution of the hyperparameters is given by

π(ξ) = p(ξ)[C(ξ)]N . (10)

Building on Liu (2020), we use the following densities p(∙) in (8) for ρ, λi, and σ2
i :

ρ ∼ N(0.5, 1)I{0 ≤ ρ ≤ 0.99}, λi ∼ N(μ, Σ), σ2
i ∼ IG(a, b). (11)
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Thus, the vector of hyperparameters is ξ = (μ, Σ, a, b). We decompose p(ξ) = p(μ, Σ)p(a, b).

The density p(μ, Σ) is constructed as follows:

μ|Σ ∼ N(0, Σ), Σ ∼ IW (W0, ν). (12)

The degrees of freedom for the Inverse Wishart distribution is set to

ν = (2nλ + 1)(nλ − 1) + 1 = 28.

The shape matrix W0 is diagonal with elements

W0,kk =
(ν − nλ − 1)V̂i

(
Êt

i[yit]
)

nλ(Ê[xk,it])2
, k = 1, . . . , nλ.

Here, Êt
i[zit] is the sample mean of the time series zit, t = 0, . . . , T , V̂[zi] is the cross-sectional

sample variance of zi, i = 1, . . . , N , and Ê[zit] is a sample average of zit, i = 1, . . . , N and

t = 1, . . . , T . The matrix W0 is constructed to align the scale of the variance of μi with the

cross-sectional variance of the data, adjusting for the average magnitudes of the regressors

that multiply the λi elements.

To obtain the density p(a, b), we follow Llera and Beckmann (2016) and let

b ∼ G(αb, βb
), p(a|b) ∝

α
−(1+a)
a baγ

a

Γ(a)β
a

. (13)

The parameters (αa, βa
, γ

a
, αb, βb

) need to be chosen by the researcher. We use αa = 1, β
a

=

γ
a

= αb = β
b

= 0.01, which specifies relatively uninformative priors for hyperparameters a

and b.

3.3 (Approximate) Posterior Inference

Posterior inference is based on an application of Bayes Theorem. Let p(Y1:N,1:T |λ1:N , σ2
1:N , ρ)

denote the likelihood function (for notational convenience we dropped Y1:N,0 from the con-

ditioning set). Then the posterior density is proportional to

p(ρ, λ1:N , σ2
1:N , ξ|Y1:N,0:T ) ∝ p(Y1:N,1:T |λ1:N , σ2

1:N , ρ)p(ρ)p
(
λ1:N , σ2

1:N , ξ
)
, (14)
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where the prior was given in (8). To generate draws from the posterior distribution we use

a Gibbs sampler that iterates over the conditional posterior distributions

λ1:N |(Y1:N,0:T , ρ, σ2
1:N , ξ), ρ|(Y1:N,0:T , λ1:N , σ2

1:N , ξ), (15)

σ2
1:N |(Y1:N,0:T , ρ, λ1:N , ξ), ξ|(Y1:N,0:T , ρ, λ1:N , σ2

1:N ).

The Gibbs sampler generates a sequence of draws
(
ρs, λs

1:N , (σ2
1:N)s, ξs

)
, s = 1, . . . , Nsim,

from the posterior distribution. The implementation of the Gibbs sampler closely follows

Liu (2020).

For the Gibbs sampler to be efficient, it is desirable to have a model specification in

which it is possible to directly sample from the conditional posterior distributions in (15).

Unfortunately, the exact likelihood function leads to a non-standard conditional posterior dis-

tribution for λ1:N |(Y1:N,0:T , ρ, σ2
1:N , ξ) because γi enters the indicator function in (3) through

the definition of t∗i . Thus, rather than using the exact likelihood function, we will use a

limited-information likelihood function of the form

pl(Y1:N,1:T |λ1:N , σ2
1:N ) =

N∏

i=1

pl(Yi,1:T |λi, σ
2
i ). (16)

The densities pl(Yi,1:T |λi, σ
2
i ) are constructed as follows. Let Δ be some positive number,

e.g., three or five time periods. Given a sample (Yi,1:T , ln Ii,1:T ) we define

ti,max = argmax1≤t≤T ln Ii,1:T .

If ti,max = T , then it is likely that t∗i ≥ T . On the other hand, if ti,max < T , then it is likely

that t∗ = ti,max. Thus, we distinguish two cases:

Case 1: Suppose ti,max = T : we drop observations Yi,T−Δ+1:T and define

pl(Yi,1:T |γi, δi, σ
2
i ) = p(Yi,1:T−Δ|γi, ρ, σ2

i ).

Because δi does not enter the likelihood function, its posterior is p(δi|Yi,1:T−Δ, γi, ρ) = p(δi|γi).

Case 2: Suppose ti,max < T : we drop observations Yi,ti,max−Δ+1:ti,max+Δ−1 and define

pl(Yi,1:T |γi, δi, σ
2
i ) = p(Yi,1:ti,max−Δ, Yi,ti,max+Δ:T |γi, δi, ρ, σ2

i ).
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Now δi does enter the likelihood function and its prior gets updated in view of the data.

3.4 Forecasting Infection Rates

Bayesian forecasts reflect parameter and shock uncertainty. We simulate trajectories of

infection growth rates from the posterior predictive distribution using the Algorithm 1. The

simulated growth rates can be converted into simulated trajectories for active infections using

(7).

Algorithm 1 (Simulating from the Posterior Predictive Distribution)

1. For s = 1, . . . , Nsim

(a) Use parameter draw s from the posterior distribution:
(
ρs, λs

1:N , (σ2
1:N )s

)
.

(b) For i = 1, . . . , N :

i. Compute t∗si = −γs
i0/γ

s
i1.

ii. Generate a sequence of draws εit ∼ N
(
0, (σ2

i )
s
)
, t = T + 1, . . . , T + H.

iii. Iterate (6) forward for t = T + 1, . . . , T + H to obtain Y s
i,T+1:T+H .

iv. Compute Is
iT+h = IiT exp

[∑h
l=1 ys

iT+l

]
, h = 1, . . . , H .

2. Based on the simulated paths Is
1:N,T+1:T+H , s = 1, . . . , Nsim, compute point, interval,

and density forecasts for each period t = T + 1, . . . , T + H.

4 A Simulation Experiment

We now conduct a small Monte Carlo experiment that compares the forecasts derived from

the panel data model to time-series forecasts generated for each location separately. The

experiment shows that in our environment forecasts for locations that experience an outbreak

at a later point in time are more accurate than forecasts for locations that have an early

outbreak because the early outbreaks facilitate learning about the RE distribution that

benefits the forecasts for the remaining locations. The data generating process (DGP) is

described in Section 4.1 and the results are summarized in Section 4.2.
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Table 1: Parameterization of DGP

Persistence: ρ = 0.8. Innovation variance: σ2 = 8.9 ∙ 10−5

Heterogeneous coefficients: λi ∼ N(λ, Σ), where

λ =







0.092
−0.001
−0.081

.0009





 , Σ = 10−6







71.76 −0.741 −40.20 0.479
−0.741 0.016 0.389 −0.009
−40.20 0.389 137.7 −0.384

0.479 −0.009 −0.384 0.021





 .

Initial infection level: Ii0 = 101 for all i.

4.1 Data Generating Process

The data generating process (DGP) is given by the trend-break model (3) for the growth

rates of infections. For the simulation experiment we assume that the innovations εit are

homoskedastic, i.e., σ2
i = σ2 for all i. The DGP matches certain aspects of the empirical

application in Section 5, but it is more stylized in other dimensions. The time period t is

a day. The number of locations in our simulation is N = 150. We split the locations into

two groups: N1 = 75 locations experience an early outbreak, starting at t = 1, and N2 = 75

locations experience a late outbreak, starting at t = 56. We refer to these groups as “early”

and “late.” For the early group calendar time and event time are identical. For the late

group, the event time is calendar time minus Tδ = 56 (8 weeks).

The parameters of the DGP are summarized in Table 1. The persistence of the growth

rates is set to ρ = 0.8. The dispersion of the parameters λi is controlled by a vector of means,

λ and a covariance matrix Σ. Both are calibrated to match some stylized facts about the

cross-sectional distribution of the country-level data used in Section 5. We then draw the

λis independently from the N(λ, Σ) distribution. The innovation variance σ2 corresponds to

a high-density value of the estimated density σ2
i ∼ IG(a, b). We assume that the outbreak

starts in each geographical location i with Ii0 = 101.

We simulate 100 panel data sets of size (N = 150, T̄ = 182). To reduce the Monte Carlo

noise, for the locations in the late group we are simply replicating the time paths of the

early group (shifted by Tδ), rather than generating new paths. For each panel data set, we

estimate forecasting models based on a sequence of samples that grow with respect to the time

dimension T . The first sample comprises the calendar time periods t = 1, . . . , T = 63 (nine
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Figure 2: Empirical Distribution of Period in which Infections Peak

Notes: Percentage of locations whose infections have peaked on or before the date specified on the x-axis.
Blue dashed line is early group, orange dashed-dotted line is late group, and solid black line is all locations.

weeks of observations), whereas the last estimation sample ranges from t = 1, . . . , T = 140

(twenty weeks of observations).

We inspect hairline plots of infection paths Iit, t = 1, 2, . . ., in calendar time, to confirm

that the calibration is reasonable. While the growth rate shocks also generate visible fluc-

tuations in the levels, most infection rate paths have well-defined global peaks. Some of the

simulated locations experience multiple waives, but eventually the infection rates fall back

to their initial level. Despite the fact that all locations start from the same level of Ii0 = 101

initial infections, there is considerable cross-sectional variation in the level of the infections.

There is also heterogeneity in the timing of the peak, which is illustrated in Figure 2. The

figure shows the percentage of locations that have peaked in or prior to period t. By con-

struction, infections in the early-group locations tend to peak sooner than in the late-group

locations. However, the peak dates in each group are quite dispersed: only 20% of early

locations have peaked after 60 days. It takes more than 100 days for the remaining early

locations to peak.

4.2 Results

Forecasting Models. We report results for two forecasting models: (i) the panel data

model and (ii) time-series estimates of the trend-break model (3) that ignore the correlation
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of λi coefficients across locations.

The panel data model is identical to the one described in Section 3, with the exception

that we follow the specification of the DGP and impose homoskedasticity. We use an IG(a, b)

prior for σ2, where a = 3 and b is sample driven: b = V̂[yit]/(a − 1). To obtain V̂[yit] we are

computing the variance across all i and t in the sample, ignoring zero values. The time-series

estimates of (3) are obtained from a Bayesian estimation that uses the same prior as the

panel data estimation, essentially setting N = 1 and treating the common parameters and

the hyperparameters of the panel model as unit-specific.

Forecast Evaluation. Because of the exponential transformation in (7) from growth rates

to levels, there is a large degree of cross-sectional heterogeneity among the levels of infec-

tion. Locations with larger numbers of infections tend to be associated with larger forecast

errors. If we simply average forecast errors or forecast interval lengths across locations, the

results will be driven by a few locations with a high level of infections. Therefore, we are

standardizing all level-forecast evaluation statistics by the level of infections at the forecast

origin, IiT , i.e., we are reporting results for the forecast of IiT+h/IiT .

We will report measures of density and interval forecasting performance below. We do

not consider point forecasts because we strongly believe that due to the highly uncertain path

of infections during a pandemic it is essential for forecasters to report forecasts that convey

the degree of uncertainty in the predictive distribution. The density forecast performance is

evaluated based on continuous ranked probability scores (CRPS). The CRPS measures the

L2 distance between the cumulative density function F̂iT+h|T (x) associated with a predictive

distribution for location i at forecast origin T and a perfect probability forecast that assigns

probability one to the realized xiT+h:

CRPST+h|T =
1

N

N∑

i=1

CRPSi,T+h|T , CRPSi,T+h|T =

∫ (
F̂iT+h|T (x) − I{xiT+h ≤ x}

)2
dx.

(17)

The CRPS is a proper scoring rule, meaning that it is optimal for the forecaster to truthfully

reveal her predictive density. Here xiT+h could either be a growth rate yiT+h or a relative

level IiT+h/IT .

For interval forecasts we will report the cross-sectional coverage frequency and the average

length separately. As discussed in more detail in Askanazi, Diebold, Schorfheide, and Shin

(2018) aggregating this information based on a common loss function is delicate because the
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interval length is not scale invariant and many researchers view coverage frequency as having

to satisfy an inequality constraint.

Density Forecast Accuracy and Timing of the Infections Path. Figure 3 depicts

CRPS values for each location based on a single simulation. The dates t on the x-axes

corresponds to the break point t∗ (in calendar time). The forecast horizon in all panels is

four weeks, i.e., h = 28. The left panels show the scores for the forecast origin in period

T = 63, whereas the right panels correspond to T = 126. The two vertical lines indicate

forecast origin and target. The top panels contain results for growth rates yiT+h and the

bottom panels for relative levels IiT+h/IiT . Each panel contains four groups of scores. The

circles are scores associated with the forecasts from the panel model, whereas the crosses

represent CRPS from time-series regressions. We also distinguish early-group locations (blue

and purple) from late-group locations (orange and yellow).

We begin with the top left panel of Figure 3. In most early-group locations, the infections

tend to peak between the forecast origin T = 63 and the four-week-ahead forecast target

T + h = 91. In the late-group locations, the peak occurs after the forecast target date.

For T = 63 the three important findings emerge. First, the panel forecasts clearly

dominate the time-series forecasts. The discrepancy is particularly large for locations in the

late group. Second, while for the early group the CRPS based on the panel forecasts seem

to be unrelated to the peak date, the accuracy of the time-series forecasts is substantially

worse for early-group locations that peak between periods 63 and 91 than it is for locations

that peak prior to period 63. Third, the four-week-ahead panel forecasts for the late group

are much more accurate than the panel forecasts for the early group.

These findings can be explained as follows. First, in a panel setting, the experience of

the early locations allows for relatively precise inference about the RE distribution, which

then sharpens the posterior inference for the late locations because the uncertainty about the

prior distribution is reduced. Note that the time series dimension for the late group is only

7. Second, due to the structural break in the growth rate at the peak infection level, it is

very difficult to predict how quickly the infections will die out after they have peaked. This

makes it easier to predict infections for the late group which includes the locations that are

still far away from the peak than for the early group in which infection levels are relatively

close to the peak.

The top right panel of Figure 3 indicates that after 18 weeks (T = 126) the benefit of

the panel approach is a lot smaller, both for the early group and the late group. Because
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Figure 3: Monte Carlo: Density Forecast Performance (CRPS) for Two Forecast Origins;
Four-Week Horizon

Forec. Origin is T = 63 Forec. Origin is T = 126
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Notes: The date t on the x-axis corresponds to the break point t∗ (in calendar time). The two vertical lines
indicate forecast origin and target. Panel forecasts: early group is blue circles, late group is orange circles.
Time-series forecasts: early group is purple crosses and late group is yellow crosses.

more time series information is available to estimate the location-specific parameters, the

benefit from using prior information is significantly diminished. The bottom panel of the

figure shows CRPS for levels rather than growth rates. The key message remains the same:

early on in the pandemic, the panel approach substantially improves forecasts for locations

that experience a delayed outbreak, because there is some learning from the locations in

which the outbreak occurred early on.

In Figure 4 we plot the group-specific average CRPS as a function of the forecast origin

T for one-week-ahead and four-week-ahead forecasts. The main messages from this figure
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Figure 4: Monte Carlo: Density Forecast Performance (CRPS)

One-Week Horizon Four-Week Horizon
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Notes: Panel forecasts are solid and time-series forecasts are dashed. Blue lines corresponds to early-group
averages and orange lines to late-group averages.

are similar to the messages from Figure 3, but now the results span a broad range of forecast

origins. First, the panel forecasts are (at least weakly) more accurate than the time-series

forecasts. However, the accuracy differential vanishes as the time-series dimension of the

estimation sample increases over time. Second, the benefit from using a panel approach is

more pronounced for the locations that experience a late outbreak than those that experience

an early outbreak.

Interval Forecast Accuracy. Finally, we report results on the interval forecast perfor-

mance for infection growth rates and levels in Figure 5. The interval forecasts are 80%

posterior probability intervals (equal-tail probability). The left panels summarize the av-

erage length of the forecast intervals by location group and forecast method. The right
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Figure 5: Monte Carlo: Interval Forecast Performance; One-Week Horizon

Average (Standardized) Length Empirical Coverage Frequency
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Notes: Average length and empirical coverage frequency for 80% posterior probability intervals. Panel
forecasts are solid and time-series forecasts are dashed. Blue lines corresponds to early-group averages and
orange lines to late-group averages.

panels depict the empirical coverage frequencies. The empirical coverage frequencies can be

compared to the nominal credible level of the interval forecasts. However, this comparison

is delicate. While in finite samples the two objects tend to differ, one can show that if the

posterior distribution of (ρ, ξ) concentrates around a limit point as N −→ ∞, then under

suitable regularity conditions, the discrepancy between the empirical coverage frequency and

the credible level will vanish.3

The panel interval forecasts have an empirical coverage frequency that is close to their

posterior credible level of 80%. The coverage frequency is fairly insensitive to the forecast

origin and the data transformation (growth rates versus levels). The left panels indicate

3See Liu, Moon, and Schorfheide (2019) for a more detailed discussion.
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that for the late-group, the average standardized length for the panel interval forecasts is

substantially shorter (both for growth rates and levels) than for time-series forecasts. For

the locations that experience an early outbreak, the average lengths of panel and time-

series interval forecasts are quite similar. For the time-series forecasts there is a substantial

mismatch between coverage level and empirical coverage probability. Early on, for T ≤ 70,

the coverage frequency is substantially less than 80%, whereas after T = 90 it is around

95%. Because the empirical coverage frequency of the panel forecasts approximately matches

the nominal credible level, the panel forecasts are preferable for all forecast origins in this

experiment.

5 Empirical Analysis

We apply the panel forecasting techniques to country/region-level data on active Covid-19

infections. The data set used in the empirical analysis is described in Section 5.1. We discuss

the posterior estimates in for the 2020-04-18 forecast origin in Section 5.2. In Section 5.3 we

inspect the density forecasts for three countries at different stages of the pandemic: South

Korea, Germany, and the U.S. Finally, in Section 5.4 we evaluate the Covid-19 infection

forecasts over a longer period of time, comparing our panel model to time-series estimates

of the trend-break model and a stylized SIR model. Since we completed the first draft of

this paper in May 2020, we have been publishing real-time forecasts at a weekly frequency

online at https://laurayuliu.com/covid19-panel-forecast/.

5.1 Data

The data set is obtained from CSSE at Johns Hopkins University.4 We define the total

number of active infections in location i and period t as the number of confirmed cases

minus the number of recovered cases and deaths. The goal of our modeling effort is to

predict the number of active infections as recorded in the CSSE data set. The data set

has some limitations. Infections are measured with error because there is evidence that a

significant number of infected individuals are asymptomatic and hence not captured in the

official statistics. Determining the precise number of Covid-19 related deaths is non-trivial

(dying with versus dying of Covid-19) and counts of the number of recovered individuals are

often inaccurate. However, improving the data quality is beyond the scope of this paper.

4https://github.com/CSSEGISandData/COVID-19
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Throughout our study we use country-level aggregates. The time period t corresponds

to a day and we fit our model to one-sided three-day rolling averages to smooth out noise

generate by the timing of the reporting. In a slight abuse of notation, the time subscript t

in (3) is meant to be event time and hence is specific on the location i. The event time is

initialized once the number of confirmed cases in a location reaches 100.5 For each location,

we let the time series of infections end at the same calendar time. As a result, the panel is

unbalanced.

Our empirical analysis is based on a cross-section of over 100 countries/regions. We start

out from 185 locations and eliminate a subset of locations according to the following rules:

(i) we eliminate locations that have not reached 100 active infections. (ii) We eliminate

locations for which ti,max − Δ < 0. This guarantees that we have at least one observation

in the limited-information likelihood function to extract information about γi. (iii) For each

location i we regress the growth rates from period t = 0 to t = T on a time trend and

an intercept and eliminate locations where the OLS estimate of the time-trend coefficient

is positive because the SIR model implies a decreasing growth rate. The resulting cross-

sectional dimension N of our panel is around 110 for early forecast origins and around 150

for late forecast origins.

5.2 Parameter Estimates For 2020-04-18

Before discussing the forecasts, we will examine the parameter estimates for one of the early

samples, namely 2020-04-18.

Heterogeneous Slope Coefficients. Our Gibbs sampler generates draws from the joint

posterior of (ρ, λ1:N , σ2
1:N , ξ)|Y1:N,0:T . We begin with a discussion of the estimates of γ1i and

δ1i, which affect the speed at which the growth rates are expected to change on a daily

basis. γ1i measures the average daily decline in the growth rate of active infections. For

instance, suppose the at the beginning of the outbreak, in event time t = 0, the growth rate

ln(It/It−1) = 0.2, i.e., approximately 20%. A value of γ1i = −0.02 implies that, on average,

the growth rate declines by 0.02, meaning that after 10 days it is expected to reach zero and

turn negative subsequently. A positive value of δ1i = 0.01 implies that after the growth rate

becomes negative, its decline is reduced (in absolute value) to γ1i + δ1i = −0.01.

5In calendar time, let τ0 = minτ s.t. Iτ > 100. Using Iτ0 , Iτ0+1, . . ., we take log differences to compute
growth rates ln(Iτ0+1/Iτ0), ln(Iτ0+2/Iτ0+1), . . .. In the estimation we need one growth rate observation to
initialize lags. Thus, in event time, period τ0 corresponds to t = −1.



This Version: August 21, 2020 23

Figure 6: Heterogeneous Coefficients Estimates and Random Effects Distributions

Distr of λ̂j,i Posterior of π(λj,i|ξ) Prior of π(λj,i|ξ)
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Notes: Point estimator λ̂j,i is posterior mean of γ1i or δ1i, respectively.

In the first column of Figure 6 we plot the cross-sectional distributions of posterior mean

estimates γ̂1i and δ̂1i. Almost all of the γ̂1i’s are in the interval [−.008,−.004]. The cross-

sectional distribution peaks at approximately -0.006. In absolute values, the estimates of

δ1i are roughly half the size of the γ̂1i’s, meaning that the recovery after the infections have

peaked will take considerably longer than the rise to the peak.

Random Effects Distribution. An important component of our model is the RE distribu-

tion π(λi|ξ) defined in (9). Prior and posterior uncertainty with respect to the hyperparam-

eters ξ generate uncertainty about the RE distribution. In the remaining panels of Figure 6

we plot draw from the posterior (center column) and prior (right column) distribution of

the RE density π(λi|ξ). Each draw is represented by a hairline. Because the normalization

constant C(ξ) of π(λi|ξ) is difficult to compute due to the truncation of a joint Normal

distribution, we show kernel density estimates obtained from draws from π(λi|ξ).

The RE densities are drawn from the posterior approximately peak around values of γ1i

and δ1i for which the histograms on the left are peaking. Thus, the estimates of the densities

cohere with the estimates of the heterogeneous coefficients. The precise relationship between

the hairlines that represent draws from the distribution of the RE densities and the posterior

point estimates are discussed in more detail in Liu, Moon, and Schorfheide (2019). The RE

densities are generally more diffuse than the distributions of the point estimates represented
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Figure 7: Fitted Regression Lines for Daily Infection Growth Rates

by the histograms because the RE densities can be viewed as priors of λi whereas the point

estimates combine information from these priors and the time series Yi,1:T .

The RE densities drawn from the prior distribution of ξ are fairly flat. Because of the

truncation, the means implied by the RE densities for γ1i are negative, whereas the means

implied by the densities for δ1i are positive. The priors for the RE densities are dependent

on the sample because the overall prior is indexed by data-dependent tuning parameters; see

Section 3.2.

The Remaining Parameters. Our posterior sampler also generates estimates for the

homogeneous autoregressive coefficient ρ. The posterior mean is ρ̂ = 0.73. Point estimates of

σ2
i range from approximately 0.02 to 0.06. The cross-sectional distribution of these estimates

is skewed to right with a few estimates exceeding 0.07.

Implied Regression Functions. After examining the cross-sectional distribution of the

γ̂1i and δ̂1i estimates, we will now inspect the implied regression functions that capture the

deterministic component of the infection growth rates for three specific countries: China,

South Korea, and Germany. These three countries experienced the outbreak at different

points in time. The posterior median estimates from which the regression lines depicted in

Figure 7 are constructed, reflect the prior information from the RE distributions depicted in

Figure 6 and the time series information for each country. By construction, the regression

lines are piecewise linear, and the break occurs at the point in time when the deterministic

component implies a zero growth rate. The fitted regression line for South Korea reflects a

fair amount of shrinkage induced by the prior distribution, because the initial rapid decline

in the growth rate is unusual according to the estimated cross-sectional RE distribution.
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5.3 Predictive Densities

We now turn to density forecasts generated from the estimated panel data model. For now,

we will focus on the early stage of the pandemic. We use Algorithm 1 to simulate trajectories

of infection growth rates which, conditional on observations of the initial levels IiT , we convert

into stocks of active infections. For each forecast horizon h we use the values ys
iT+h and Is

iT+h,

s = 1, . . . , Nsim to approximate the predictive density. Strictly speaking, we are not reporting

complete predictive densities. Instead, we plot medians and construct equal-tail-probability

bands that capture the range between the 20-80% and 10-90% quantiles. The wider the

bands, the greater the uncertainty.

Figure 8 shows density forecasts over 60 days for the growth rate, the level of active

infections, and the recovery date in South Korea, Germany, and the U.S. based on 2020-

04-18 data.6 The forecast origin is indicated by the vertical dashed line. At the forecast

origin, the three countries are at different stages of the epidemic. In South Korea, the level

of infections is 67 percent below its peak value. Germany has barely moved beyond the peak

and the U.S. is still far away from its peak. Prior to the forecast origin we show the actual

values and in-sample fitted values.7

The panels in the first row of Figure 8 show forecasts for the growth rate of active

infections. At the forecast origin, the actual growth rates for South Korean and Germany

are negative, whereas the growth rate for the U.S. is positive. The median forecast is driven

by the deterministic trend component in our model for yit; see (3) and Figure 7. The bands

reflect both parameter uncertainty and stochastic fluctuations around the trend component

generated by the autoregressive process uit.

The width of the bands is the smallest for South Korea and the largest for the U.S.

Two factors potentially contribute to the wider bands for the U.S.: shock uncertainty and

parameter uncertainty. Shock uncertainty is not the driving factor. The estimated shock

standard deviations σ̂i for the two countries are very similar: 0.032 for South Korea and

0.035 for the U.S. Instead, parameter uncertainty is the culprit. Recall that at the peak,

the parameters of the deterministic component of our model shift by δi. Because the growth

rate in the U.S. has not yet crossed zero and the country has not reached the peak, there are

6Compared to Figure 7, we replaced China by the U.S. because in mid-April the reported levels of Covid-19
infections in China had already fallen from 58,000 to 1,600.

7The fitted values are generated as follows: for each draw from the posterior distribution, we generate
a one-step-ahead in-sample prediction for each country/region. Then we compute the median across these
in-sample predictions for each location.
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Figure 8: 2020-04-18 Forecasts for South Korea, Germany, and the U.S.

Daily Growth Rates of Active Infections ln(It/It−1)

Daily Number of Active Infections It – Parameter Uncertainty Only

Daily Number of Active Infections It – Parameter and Shock Uncertainty

Cumulative Density Function for Date of Recovery

Notes: Rows 1 to 3: The vertical lines indicate the forecast origin. The circles indicate actual infections. The
solid lines prior to the forecast origin represent in-sample one-step-ahead forecasts. The solid lines after the
forecast origin represent medians of the posterior predictive distribution. The grey shaded bands indicate the
20%-80% (dark) and 10%-90% (light) interquantile ranges of the posterior predictive distribution. Bottom
row: cumulative density function (associated with posterior predictive distribution) of of date of recovery
defined as τ such that Iτ = I0.



This Version: August 21, 2020 27

no observations available yet to estimate δi, which increases the contribution of parameter

uncertainty to the predictive distribution.

The second and third rows of Figure 8 depict predictions for the daily level of active

infections. The path of active infections broadly resembles the paths simulated with the SIR

model in Section 2. The rise of infections during the outbreak tends to be faster than the

subsequent decline, which is a feature that is captured by the break in the conditional mean

function of our model for the infection growth rate yit in (3). The difference between the

bands depicted in the second and third rows is that the former reflects parameter uncertainty

only (we set future shocks equal to zero), whereas the latter reflects parameter and shock

uncertainty. In the case of Germany, shock uncertainty increases the width of the bands by

approximately 30%.

Due to the exponential transformation that is used to recover the levels, the predictive

densities are highly skewed and exhibit a large upside risk. This is particularly evident for

the U.S. The growth rate prediction in the first row indicates that there is an approximately

20% probability of a positive infection growth rate throughout April and at least a 10%

probability until the middle of June. Converted into levels, temporarily positive growth

rates of infections can generate a rise of infections from less than one million in April to

more than five million two months later.

In the bottom row of Figure 8 we plot cumulative density function for the date of recovery,

which we define as the first date when the infections fall below the initial level Ii0. The density

function is calculated by examining each of the future trajectories Is
iT+h for h = 1, . . . , 60

generated by Algorithm 1. For South Korea the probability that the infection rate will fall

below Ii0 over the two month period is close to 80%, whereas for Germany and the U.S. the

probability is approximately 50% and 60%, respectively.

In Figure 9 we overlay eight weeks of actual infections onto density forecasts generated

from the 2020-04-18 (top panels) and 2020-06-06 (bottom panels) samples. The forecasts in

the top row are identical to the ones reported in Figure 8. Forecasts for South Korea and

Germany are remarkably accurate. Over a two-week horizon the actuals are very close to the

median prediction. Subsequently the actual infection level falls less quickly than predicted

by the model. For Germany the actual path remains with the 60% credible band whereas

for South Korea it moves outside of the narrow 80% credible band after six weeks.

For the U.S., according to the median of the predictive distribution, infection levels should

fall shortly after the forecast origin. However, this fall does not occur. Instead the level of
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Figure 9: Interval Forecasts and Actuals

Forecast Origin is 2020-04-18, Horizon ends 2020-06-13

Forecast Origin is 2020-06-06, Horizon ends 2020-08-01

Notes: The vertical lines indicate the forecast origins. The circles indicate actual infections. The solid
lines prior to the forecast origin represent in-sample one-step-ahead forecasts. The solid lines after the
forecast origin represent medians of the posterior predictive distribution. The grey shaded bands indicate
the 20%-80% (dark) and 10%-90% (light) interquantile ranges of the posterior predictive distribution.

active infections is steadily rising. Because the U.S. density forecast exhibits a significant

tail risk, the actual infections remain within the 60% band until early May and within the

very wide 80% band throughout the eight-week forecast period.

The second row of Figure 9 depicts forecasts based on the 2020-06-06 sample. Compared

to the middle of April, the infection levels in South Korea and Germany have fallen further

and our model predicts a continued decline. This prediction turned out overly optimistic

as the infection levels in both countries remained high and even increased temporarily. The

actuals are generally outside of the 60% credible band and are barely covered by the upper

edge of the 80% band. For the U.S. the posterior median prediction of our model is a fairly

quick recovery from the pandemic. However, the 80% band still shows a substantial upside

risk of more than four million infections at the beginning of August. The actual level of

infections in the U.S. continues to rise. By the end of June it has climbed outside of the 60%

credible band but stays well within the 80% band.
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5.4 Forecast Evaluation

We now turn to a more systematic evaluation of the forecasts and will assess the accuracy

of density and interval forecasts represented by the bands in Figures 8 and 9. For reasons

previously discussed in Section 4.2, we standardize future infections IiT+h by the level of

infections IiT at the forecast origin. A closer inspection of the forecasts for more than

100 countries/regions reveals that the long-run forecasting performance is not particularly

good. This is not just a feature of our panel trend-break model, but also a feature of other

epidemiological models such as the SIR model for which we will report results below. Thus,

in this section we will focus on one-week and four-week ahead forecasts and not report results

for an eight-week horizon.

Alternative Models. In addition to the panel model forecasts, we consider two alternative

forecasts. First, as in Section 4, we generate time-series forecasts based on the trend-break

model (3) for each location. Second, we estimate a version of the simple SIR in (1) with

time-varying parameters βt and γt. Notice, that by rewriting (1) we can express βt and γt

directly as a function of the observables (here we are omitting i subscripts):8

βt =
N

It−1

(

1 −
St

St−1

)

, γt = −
(St − St−1) + (It − It−1)

It−1

. (18)

This allows us to estimate the AR(1) law of motion in (2) for each country using Bayesian

techniques. The AR(1) models are then used to simulate trajectories (βT+1:T+H , γT+1:T+H)

from the posterior predictive distribution.9 For each parameter sequence, we iterate the SIR

model (1) forward to obtain a predictive distribution of the active infections.

Density Forecast Accuracy. Figure 10 summarizes the one-week-ahead density fore-

casting performance for once-a-week forecast origins starting on 2020-04-18 and ending on

2020-07-04. For each location, we compute the probability score CRPS i,T+h|T . The top row

shows the cross-sectional median as a function of the forecast origin, whereas the center

and the bottom row show the cross-sectional empirical distribution for two forecast origins:

2020-04-18 and 2020-06-06.

The panels in the left column of Figure 10 cover all locations, whereas the panels in the

right column distinguish between early-group and late-group locations. The early group com-

prises locations that experienced more than 100 infections before 2020-03-28. The remaining

8The following additional variables are obtained from the JHU CSSE dataset: N is the total population
of each country. St is computed as N - It - recovered cases - deaths.

9Based on the specification of the SIR model, we let βt, γt > 0 and 0 ≤ St, It, Rt ≤ N , for all t.
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locations are assigned to the late group. The groups evolve over time as more locations

experience Covid-19 outbreaks and pass our sample selection criteria; see Section 5.1. For

the 2020-04-18 sample the early group has 84 and the late group has 25 locations. For the

2020-06-06 the sample sizes are 87 and 58, respectively.

The top row of Figure 10 shows that as time progresses and information accumulates,

forecast performance improves for all methods in general. Across all locations (top left panel),

the time series forecasts from the trend-break model are slightly more accurate than the

panel forecasts as indicated by the lower median CRPS. However, comparing the empirical

distribution functions for the 2020-04-18 and 2020-06-06 origins (center left and bottom left

panels), the overall difference in performance across units is fairly small.

The panels in the right column of Figure 10 distinguish between locations that experi-

enced the Covid-19 outbreak at an early stage and locations that were hit by the pandemic

at a later stage. The key result is that for forecast origins dated 2020-05-09 or earlier, the

panel forecasts for the late group are more accurate than the time series forecasts from

the trend-break model. This result confirms the basic intuition that the panel approach

can be advantageous during a slowly spreading pandemic because the experience of the

early-group countries can sharpen inference on the RE distribution for the latter countries.

Unfortunately, because the time series approach dominates the panel approach for the early

countries, in the aggregate there is no clear advantage to the panel analysis in our data set.

The left panels of Figure 10 also contain the CRPS for the stylized SIR model. Except

for the forecast origins in the month of May, the SIR forecasts of the level of infections are

dominated by the panel and time-series forecasts from the trend-break model. However,

as time progresses the accuracy differentials across models decreases. To understand the

difference between the trend-break model and the SIR model forecasts we also examined the

accuracy of the infection growth forecasts. It turns out, that in terms of growth rates the

SIR model performs quite well. The key difference between the SIR and the trend-break

forecasts is that the former are downward biased for the early dates, whereas the latter have

an upward bias. Over time, the bias of the forecasts converges. A negative bias means that

the SIR model overpredicts the growth rate, which can lead to potentially large errors in

the level forecast, in particular if predicted growth rates exceed one and imply explosive

behavior.

Figure 11 shows results for four-week-ahead density forecasts. Qualitatively, they are

very similar to the one-week-ahead forecasts, but there are some important quantitative
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Figure 10: CRPS, One-Week Horizon
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Notes: Left column panels: solid is panel, dashed is country-level, and dashed-dotted is SIR. Right column
panels: solid is panel, dashed is country-level. Blue lines correspond to early group and orange lines to late
group.
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Figure 11: CRPS, Four-Week Horizon
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Notes: Left column panels: solid is panel, dashed is country-level, and dashed-dotted is SIR. Right column
panels: solid is panel, dashed is country-level. Blue lines correspond to early group and orange lines to late
group.
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differences. First, in the early stage of the pandemic the SIR model forecasts are now

substantially worse than the forecasts from the trend-break model. Second, while the median

CRPS from the panel model and the time series model are essentially identical for all forecast

horizons, the empirical distribution for the 2020-04-18 origin indicates that in the right

tail of the CRPS distribution, the panel forecasts dominate the time-series forecasts. This

performance difference is driven by the late group, which can be seen from the panels in the

right column and vanishes in the middle of May as more time series information becomes

available for both groups.

Interval Forecast Accuracy. We are considering interval forecasts with a nominal coverage

probability of 80%. The intervals are constructed as equal-tail probability intervals from the

posterior predictive distribution. Results for the one-week forecast horizon are presented in

Figure 12. The coverage frequencies for the trend-break model forecasts (panel and time

series) are fairly close to the nominal level of 80%. The coverage frequency of the SIR

model interval forecast, on the other hand, is substantially lower than the nominal level.

The panel data forecasts have a smaller average length than the individual-level forecasts

for both groups and in the aggregate. Thus, on balance, in terms of interval forecasting,

the panel approach comes out slightly ahead. Finally, the bottom right panel shows that

the interval forecasts for the late group are generally wider than for the early group. The

additional uncertainty is caused by the difficulty of predicting the change in infection growth

rates around the peak.

Figure 13 displays results for a four-week horizon. Over this longer horizon, the coverage

frequency is generally poor. As for the shorter horizon, the SIR model interval forecasts are

substantially worse in terms of coverage frequency and interval length than the panel and

time-series forecasts from the trend-break model.

6 Conclusion

We adopted a panel forecasting model initially developed for applications in economics to

forecast active Covid-19 infections. A key feature of our model is that it exploits the experi-

ence of countries/regions in which the epidemic occurred early on, to sharpen forecasts and

parameter estimates for locations in which the outbreak took place later in time. At the

core of our model is a specification that assumes that the growth rate of active infections

can be represented by autoregressive fluctuations around a downward sloping deterministic
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Figure 12: Interval Forecast Performance, One-Week Horizon
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Notes: The nominal coverage probability is 80%. Left column panels: solid is panel, dashed is country-level,
and dashed-dotted is SIR. Right column panels: solid is panel, dashed is country-level. Blue lines correspond
to early group and orange lines to late group.

trend function with a break. Our specification is inspired by infection dynamics generated

from a simple SIR model.

According to our model, there is a lot of uncertainty about the evolution of infection

rates, due to parameter uncertainty and the realization of future shocks. Moreover, due

to the inherent nonlinearities and exponential transformations, predictive densities for the

level of infections are highly skewed and exhibit substantial upside risk. Consequently, it is

important to report density or interval forecasts, rather than point forecasts.

A natural extension of our model is to allow for additional, data-determined breaks in

the deterministic trend function as the pandemic unfolds and countries/regions are adopting
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Figure 13: Interval Forecast Performance, Four-Week Horizon
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Notes: Left column panels: solid is panel, dashed is country-level, and dashed-dotted is SIR. Right column
panels: solid is panel, dashed is country-level. Blue lines correspond to early group and orange lines to late
group.

new policies that accelerate or decelerate the spread of the virus and as more and more

people become resistant to the infection. It is also worthwhile to link the heterogeneous

coefficient estimates (or transformations thereof) to location-specific variables that measure

social norms and policies to fight the pandemic. This could be done in a second step through

ex-post regressions with the heterogeneous coefficient estimates as left-hand-side variables

or, more elegantly, in a correlated RE framework.
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Supplemental Online Appendix to
“Panel Forecasts of Country-Level Covid-19

Infections”

Laura Liu, Hyungsik Roger Moon, and Frank Schorfheide

A Alternative Covid-19 Forecasts

Here we list URLs of Covid-19 forecasts mentioned in the introduction. The list is not meant

to be exhaustive.

• Li and Linton (2020):

http://covid.econ.cam.ac.uk/linton-uk-covid-cases-predicted-peak/

• The Center for Disease Control:

https://www.cdc.gov/coronavirus/2019-ncov/covid-data/forecasting-us.html

• Nicholas Reich: https://reichlab.io/covid19-forecast-hub/

• Institute for Health Metrics and Evaluation: http://covid19.healthdata.org/

• Fernandez-Villaverde and Jones (2020):

https://web.stanford.edu/~chadj/Covid/Dashboard.html

• Georgia State University School of Public Health:

https://publichealth.gsu.edu/research/coronavirus/

• Youyang Gu: https://covid19-projections.com/

http://covid19.healthdata.org/
http://covid.econ.cam.ac.uk/linton-uk-covid-cases-predicted-peak/
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