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Abstract

We use a dynamic panel Tobit model to generate point and density forecasts for

a large cross-section of short time series of censored observations. Our fully Bayesian

approach allows us to flexibly estimate the cross-sectional distribution of heteroge-

neous coefficients and then implicitly use this distribution to construct Bayes forecasts

for the individual time series. We consider versions of the model with homoskedastic

and heteroskedastic innovations. In Monte Carlo experiments and the empirical ap-

plication to loan charge-off rates of small banks, we compare Bayesian point, interval,

and density forecasts obtained from various versions of the panel Tobit model. In our

empirical application the assumption of homoskedasticity yields more accurate point

forecasts, whereas interval and density forecasts are more accurate if computed under

the assumption of heteroskedastic innovations. Local house prices and unemployment

rates do not appear to be significant determinants of charge-off rates.
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1 Introduction

This paper considers the problem of forecasting a large collection of short time series with

censored observations. In particular, in our empirical application we forecast charge-off rates

on loans for a panel of small banks. The prediction of charge-off rates is interesting from a

regulator’s perspective because charge-offs generate losses on loan portfolios. If these charge-

offs are large, the bank may be entering a period of distress and require additional capital.

Due to mergers and acquisitions, changing business models, and changes in regulatory envi-

ronments the time series dimension that is useful for forecasting is often short. The general

methods developed in this paper are not tied to the charge-off rate application and can be

used in any setting in which a researcher would like to analyze a panel of censored data with

a large cross-sectional and a short time series dimension.

The challenge in forecasting short time series is that they do not contain a lot of informa-

tion about unit-specific parameters. An accurate estimation of the heterogeneous coefficients

helps with an accurate forecast. A natural way of adding information is through the use of

prior distributions. For each time series, the prior information can be combined with the

unit-specific likelihood function to form a posterior. From a Bayesian perspective the pos-

terior distribution then can be used to derive a forecast that minimizes posterior expected

loss. From a frequentist perspective one obtains a forecast that will have some bias, but

in a mean-squared-error sense, the introduction of bias might be dominated by a reduction

in sampling variance. The key insight in panel data applications is that in the absence of

any meaningful subjective prior information, one can extract information from the cross

section and equate the prior distribution with the cross-sectional distribution of unit-specific

coefficients.

There are several ways of implementing this basic idea. An empirical Bayes implemen-

tation would create a point estimate of the cross-sectional distribution of the heterogeneous

coefficients and then condition the subsequent posterior calculations on the estimated prior

distribution.1 In fact, the classic James-Stein estimator for a vector of means can be inter-

preted as an estimator constructed as follows. In the first step a prior is generated by fitting

a normal distribution to a cross-section of observations. In a second step, this prior is then

combined with the unit-specific likelihood function to generate a posterior estimate of the

unknown mean for that unit. In a panel setting the implementation is more involved but

1Empirical Bayes methods have a long history in the statistics literature going back to Robbins (1956);
see Robert (1994) for a textbook treatment.



This Version: March 4, 2018 2

follows the same steps. If the model is linear in the coefficients and the forecast is evalu-

ated under a quadratic forecast error loss function, then Tweedie’s formula, which expresses

the posterior mean of the heterogeneous coefficients as the maximum likelihood estimate

corrected by a function of the cross-sectional density of sufficient statistic, can be used to

construct a forecast without having to explicitly estimate a prior distribution for the hetero-

geneous coefficients. This insight has been recently used by Brown and Greenshtein (2009),

Gu and Koenker (2016a,b), and Liu, Moon, and Schorfheide (2017).

Unfortunately, Tweedie’s formula does not extend to nonlinear panel data models. Rather

than pursuing an Empirical Bayes strategy, we will engage in a full Bayesian analysis by spec-

ifying a hyperprior for the distribution of heterogeneous coefficients and then constructing

a joint posterior for the coefficients of this hyperprior as well as the actual unit-specific co-

efficients. While the computations are more involved, this approach can in principle handle

quite general nonlinearities. Moreover, it is possible to generate point predictions under

more general loss functions, as well as interval and density forecasts. For a linear panel

data model, a full Bayesian analysis is implemented by Liu (2017). The contribution of our

paper is to extend the implementation to the dynamic panel Tobit model and to apply it

to the problem of forecasting loan charge-off rates. We compare Bayesian point, interval,

and density forecasts obtained from various versions of the panel Tobit model. In our em-

pirical application the assumption of homoskedasticity yields more accurate point forecasts,

whereas interval and density forecasts are more accurate if computed under the assumption

of heteroskedastic innovations. Local house prices and unemployment rates do not appear

to be significant determinants of charge-off rates.

Our paper relates to several branches of the literature. The papers most closely related

are Gu and Koenker (2016a,b), Liu (2017), and Liu, Moon, and Schorfheide (2017). All four

of these papers focus on the estimation of the heterogeneous coefficients in linear panel data

models and the subsequent use of the estimated coefficients for the purpose of prediction.

Only the full Bayesian analysis in Liu (2017) has a natural extension to nonlinear models.

Liu, Moon, and Schorfheide (2017), building on Brown and Greenshtein (2009), show that

an empirical Bayes implementation based on Tweedie’s formula can asymptotically (as the

cross-sectional dimension tends to infinity) lead to forecasts that are as accurate as the so-

called oracle forecasts. Here an oracle forecast is an infeasible benchmark that assumes that

all homogeneous coefficients, as well as the distribution of the heterogeneous coefficients, are

known to the forecaster. Liu (2017) shows that the predictive density obtained from the full

Bayesian analysis converges strongly to the oracle’s predictive density as the cross-section
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gets large.

There is a Bayesian literature on the estimation of censored regression models. The idea

of using data augmentation and Gibbs sampling to estimate a Tobit model dates back to

Chib (1992). To sample the latent uncensored observations we rely on an algorithm tailored

toward dynamic Tobit models by Wei (1999). Sampling from truncated normal distributions

is implemented with a recent algorithm of Botev (2017). A broader survey of the literature

on Bayesian estimation of univariate and multivariate censored regression models can be

found in the handbook chapter by Li and Tobias (2011).

We consider two approaches of modeling the unknown distribution of the heterogeneous

coefficients. First, we assume that this distribution belongs to the class of Normal distribu-

tions (or Normal and Inverse Gamma if we allow for heteroskedasticity). Second, we consider

a more flexible setup in which the distribution is represented by Dirichlet process mixtures

of Normals. Even though we do not emphasize the nonparametric aspect of this modeling

approach (due to a truncation, our mixtures are strictly speaking finite and in that sense

parametric), our paper is related to the literature on flexible / nonparametric density mod-

eling using Dirichlet process mixtures (DPM). Examples of papers that use DPMs in the

panel data context are Hirano (2002), Burda and Harding (2013), Rossi (2014), and Jensen,

Fisher, and Tkac (2015). The implementation of our Gibbs sampler relies on Ishwaran and

James (2001, 2002).

Our analysis raises the question to what extent the cross-sectional distribution of the

heterogeneous coefficients is identifiable. Even though identification is not a necessary pre-

requisite for a Bayesian analysis as discussed, for instance in Moon and Schorfheide (2012)

and references cited therein, it is important to understand in what directions of the parameter

space one can expect to learn from the data. There exists a large literature on identification

in nonlinear panel data models. Earlier censored panel regression analysis mostly focused on

the established identification and estimating the homogeneous regression coefficients under

fixed effects. Examples of these studies include Honoré (1992) (static model), Hu (2002) (dy-

namic model), and Abrevaya (2000) (generalized fixed effect model), Honore and Hu (2004)

(endogenous censored panel regression), and Arellano and Honoré (2001) (survey on panel

Tobit type regressions).

More recent papers investigated more general nonlinear and non-separable panel regres-

sion models. Here the conventional censored panel regression is a special case and the

literature established identification of various parameters of interests such as regression co-
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efficients, marginal effects, average structural function, and average treatment effects (e.g.,

Bester and Hansen (2009), Altonji and Matzkin (2005), Bonhomme (2012), and Hoderlein

and White (2012). The paper most relevant to our analysis is that of Hu and Shiu (2018).

They obtain identification results for censored dynamic panel data models with parametric

specifications of the dynamics, censoring, and distribution of the shocks, but a nonpara-

metric specification of the distribution of the unobserved individual effects. This covers the

benchmark model considered in Section 2.

The remainder of this paper is organized as follows. The basic dynamic panel Tobit

model with homoskedastic shocks is presented in Section 2. We discuss its specification and

develop a sampler for posterior inference. This model is extended to allow for cross-sectional

heteroskedasticity in Section 3 and further generalizations are sketched out in Section 4. We

conduct a Monte Carlo experiment in Section 5 to examine the performance of the proposed

techniques in a controlled environment. An empirical application in which we forecast charge-

off rates on various types of loans for a panel of banks is presented in Section 6. Finally,

Section 7 concludes. A description of the data sets, additional empirical results, and some

derivations are relegated to the Online Appendix.

2 The Basic Model

To fix ideas, we consider the following dynamic panel Tobit model with heterogeneous inter-

cepts:

yit = yit∗I{y
∗
it ≥ 0}, i = 1, . . . , N, t = 0, . . . , T (1)

y∗
it = λi + ρy∗

it−1 + uit, uit
iid
∼ N(0, σ2), y∗

i,0 ∼ N(μi∗, σ
2
∗),

where I{x ≥ a} is the indicator function that is equal to one if x ≥ a and equal to zero

otherwise. Let θ = [ρ, σ2]′. The parameters that characterize the distribution of y∗
i,0 could

either be a function of (θ, λi), e.g., μi∗ = λi/(1 − ρ) and σ2
∗ = σ2/(1 − ρ2) or they could

be fixed, e.g., μi∗ = 0 and σ2
∗ = 0. We assume that conditional on the parameters the

observations are cross-sectionally independent and that the heterogeneous intercepts λi are

distributed according to an unknown random effects distribution

λi
iid
∼ π(λ). (2)
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The density π(∙) can be viewed as an unknown, possibly infinite-dimensional parameter. Our

goal is to generate forecasts of yiT+h conditional on the observations

Y1:N,0:T =
{
(y10, . . . , yN0), . . . , (y1T , . . . , yNT )

}
.

A natural benchmark against which we can compare our forecasts is the so-called oracle

forecast that is obtained under the assumption that θ and π(∙) are known but λi is unknown.

Due to the cross-sectional independence, the oracle forecast can be derived from the posterior

predictive distribution of yiT+h given
(
Yi,0:T , θ, π(∙)

)
. Define the posterior distribution of λi

as

p(λi|Yi,0:T , θ, π) ∝ p(Yi,1:T |yi,0, θ, λi)π(λi), (3)

where p(Yi,1:T |yi,0, θ, λi) is the conditional likelihood function associated with (1). Then, the

posterior predictive distribution is given by

p(yiT+h|Yi,0:T , θ, π) (4)

=

∫
p(yiT+h|y

∗
iT+h)p(y∗

iT+h|y
∗
iT , θ, λi)p(y∗

iT |Yi,0:T , θ, λi)p(λi|Yi,0:T , θ, π)dy∗
iT dλi.

The distribution of yiT+h|y∗
iT+h is a unit point mass that is located at zero if y∗

iT+h ≤ 0 or at

y∗
iT+h if y∗

iT+h > 0. The density p(y∗
iT+h|y

∗
iT , θ, λi) is generated by the forward simulation of

the autoregressive law of motion for y∗
it in (1) and the remaining two densities are posteriors

for y∗
iT and λi. In Section 2.1 we discuss the computation of the oracle predictor. Sections 2.2

and 2.3 focus on the estimation of θ and π, respectively. With the exception of the treatment

of the latent variables Y ∗
i,0:T , the computations for the Tobit model are very similar to the

ones for the linear model studied in Liu (2017).

2.1 Oracle Forecast

In order to implement the oracle forecasts we will use a data augmentation algorithm (see

Tanner and Wong (1987)) to generate draws from the posterior predictive distribution in

(??). The implementation of this algorithm is based on Wei (1999) who studied the Bayesian

estimation of univariate dynamic Tobit models. For each unit i, the data augmentation

algorithm iterates over the following two conditional posteriors:

Y ∗
i,0:T |(Yi,0:T , θ, λi) and λi|(Yi,0:T , Y ∗

i,0:T , θ, π), (5)
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thereby generating draws from the joint distribution of (Y ∗
i,0:T , λi)|(Yi,0:T , Y ∗

i,0:T , θ, π) that can

be used to approximate the oracle predictor in equation (4).

Drawing from Y ∗
i,0:T |(Yi,0:T , θ, λi). To fix ideas, consider the following sequence of observa-

tions yi0, . . . , yiT :

y∗
i0, y∗

i1, 0, 0, 0, y∗
i5, y∗

i6, 0, 0, 0, y∗
i10.

Our model implies that whenever yit > 0 we can deduce that y∗
it = yit. Thus, we can

focus our attention on periods in which yit = 0. In the hypothetical sample we observe

two strings of censored observations: (yi2, yi3, yi4) and (yi7, yi8, yi9). We use t1 for the start

date of a string of censored observations and t2 for the end date. In the example we have

two such strings, we write t
(1)
1 = 2, t

(1)
2 = 4, t

(2)
1 = 7, t

(2)
2 = 9. The goal is to characterize

p(Y ∗
i,t

(1)
1 :t

(1)
2

, Y ∗
i,t

(2)
1 :t

(2)
2

|Yi,0:T , θ, λi). Because of the AR(1) structure, observations in periods

t < t1 − 1 and t > t2 + 1 contain no additional information about y∗
it1

, . . . , y∗
it2

. Thus, we

obtain

p(Y ∗
i,t

(1)
1 :t

(1)
2

, Y ∗
i,t

(2)
1 :t

(2)
2

|Yi,0:T , θ, λi)

= p(Y ∗
i,t

(1)
1 :t

(1)
2

|Y
i,t

(1)
1 −1:t

(1)
2 +1

, θ, λi)p(Y ∗
i,t

(2)
1 :t

(2)
2

|Y
i,t

(2)
1 −1:t

(2)
2 +1

, θ, λi),

which implies that we can sample each string of latent observations independently.

Let s = t2 − t1 + 2 be the length of the segment that includes the string of censored

observations as well as the adjacent uncensored observations. Iterating the AR(1) law of

motion for yit forward from period t = t1 − 1 we deduce that the vector of random variables

[Y ∗
i,t1:t2

, yit2+1]
′ conditional on yit1−1 is multivariate normal with mean

M1:s|0 = [μ1, . . . , μs]
′, μ1 = λ + ρyit1−1, μτ = λ + ρμτ−1 for τ = 2, . . . , s. (6)

The covariance matrix takes the form

Σ1:s|0 = σ2







ρ1,1|0 ∙ ∙ ∙ ρ1,s|0
...

. . .
...

ρs,1|0 ∙ ∙ ∙ ρs,s|0





 , ρi,j|0 = ρj,i|0 = ρj−i

i−1∑

l=0

ρ2l for j ≥ i. (7)

We can now use the formula for the conditional mean and variance of a multivariate normal
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distribution

M1:s−1|0,s = M1:s−1|0 − Σ1:s−1,s|0Σ
−1
ss|0(yit2+1 − μs) (8)

Σ1:s−1,1:s−1|0,s = Σ1:s−1,1:s−1|0 − Σ1:s−1,s|0Σ
−1
ss|0Σs,1:s−1|0

to deduce that

Y ∗
i,t1:t2

∼ TN−

(
M1:s−1|0,s, Σ1:s−1,1:s−1|0,s

)
. (9)

Here we use TN−(μ, Σ) to denote a normal distribution that is truncated to satisfy y ≤

0. Draws from this truncated normal distribution can be efficiently generated using the

algorithm recently proposed by Botev (2017).

There are two important special cases. First, suppose that t2 = T , meaning that the

last observation in the sample is censored. Then the mean vector and the covariance matrix

of the truncated normal distribution are given by (6) and (7) with the understanding that

s = t2 − t1 + 1. Second, suppose that t1 = 0, meaning that the initial observation in the

sample yi0 = 0. Because in this case the observation yit1−1 = yi,−1 is missing, we need to

modify the expressions in (6) and (7). According to (1), y∗
0 ∼ N(μ∗, σ

2
∗). This leads to the

mean vector

M1:s = [μ1, . . . , μs], μ1 = μ∗, μτ = λ + ρμτ−1 for τ = 2, . . . , s. (10)

and the covariance matrix

Σ1:s = σ2










0 0 ∙ ∙ ∙ 0

0 ρ1,1 ∙ ∙ ∙ ρ1,s−1

...
...

. . .
...

0 ρs−1,1 ∙ ∙ ∙ ρs−1,s−1










+ σ2
∗







ρ0+0 ∙ ∙ ∙ ρ0+(s−1)

...
. . .

...

ρ(s−1)+0 ∙ ∙ ∙ ρ(s−1)+(s−1)





 , (11)

where the definition of ρi,j is identical to the definition of ρi,j|0 in (7). One can then use

the formulas in (8) to obtain the mean and covariance parameters of the truncated normal

distribution.

Drawing from λi|(Yi,0:T , Y ∗
i,0:T , θ, π). The posterior inference with respect to λi becomes

“standard” once we condition on the latent variables Y ∗
i,0:T . It is based on the Gaussian

location-shift model

y∗
it − ρy∗

it−1 = λi + uit, uit
iid
∼ N(0, σ2). (12)



This Version: March 4, 2018 8

If the prior distribution π(λ) is Gaussian, the posterior of λ will be Gaussian and direct

sampling from λi|(Yi,0:T , Y ∗
i,0:T , θ, π) is straightforward. If π(λ) is non-Gaussian, a draw could

be generated with a Metropolis-Hastings (MH) step.

Drawing from the predictive density. Conditional on (y∗
iT , θ, λi) the predictive distri-

bution of yiT+h is given by a censored (at zero) normal distribution (CN+):

yiT+h|(y
∗
iT , θ, λi) ∼ CN+

(

λi

h−1∑

l=0

ρl + ρhy∗
iT , σ2

h−1∑

l=0

ρ2l

)

. (13)

Draws from this distribution can be generated by direct sampling and analytical formula for

the mean and the variance are available (see Greene (2008) and the Online Appendix).

2.2 Estimating θ

We now consider the conditional posterior distribution θ|(Yi,0:T , Y ∗
i,0:T , λi, π). Note that con-

ditional on the latent observations Y ∗
i,0:T the actual observations Yi,0:T contain no additional

information. Moreover, conditional on λi the density π(λ) is irrelevant for inference on θ.

We can rewrite the law-of-motion for y∗
it as

y∗
it − λi = ρy∗

it−1 + uit, uit
iid
∼ N(0, σ2), i = 1, . . . , N and t = 1, . . . , T. (14)

Conditional on the λi’s we have a Gaussian linear regression model with unknown slope

coefficient ρ and unknown variance σ2. The temporal and spatial independence of the uit’s

allows us to pool observations across i and t. If we use a conjugate Normal-Inverse-Gamma

(NIG) prior, then the conditional posterior θ|(Y ∗
i,0:T , λi) also belongs to the NIG family.

2.3 Estimating π(λ)

To model the unknown random effects distribution π(λ) we consider a tightly parameterized

approach under which π(λ) is assumed to be Gaussian with unknown scale and location

parameter and a more flexible approach in which we use a Dirichlet Process Mixture (DPM)

to generate a prior distribution for π(λ).

Parametric treatment of π(λ). We assume that π belongs to the family of normal

distributions and write pN (x|μ, σ2) to denote the density of a N(μ, σ2). Using this notation,
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let

p(λ|π) = pN

(
λ|μλ, ω

2
λ

)
. (15)

Thus, here the distribution π(λ) is represented by the two-dimensional parameter vector

[μλ, ω
2
λ]

′. To induce a prior distribution for the hyperparameters (μλ, ω
2
λ) we assume that

p
(
ω2

λ

)
= pIG

(
ω2

λ

∣
∣2, 2), p

(
μλ|ω

2
λ

)
= pN

(
μλ|0, ω

2
λ

)
, (16)

where pIG(x|a, b) is the density of an Inverse Gamma IG(2, 2) distribution.

Recall from (12) that the likelihood function for λi obtained from the latent variables

Y ∗
i,0:T is Gaussian. Thus, we deduce that the conditional posterior distribution

p(λi|Yi,0:T , Y ∗
i,0:T , θ, π) ∝ p(Yi,0:T |Y

∗
i,0:T )p(Y ∗

i,0:T |λi, θ)p(λi|π) (17)

is also Normal. The conditional posterior distribution for the parameters of the random-

effects distribution can be characterized as follows:

p(μλ, ω
2
λ|Y1:N,0:T , Y ∗

1:N,0:T , λ1:N , θ) ∝ p(μλ, ω
2
λ)

N∏

i=1

p(λi|μλ, ω
2
λ). (18)

Here the densities p(Y ∗
i,0:T |λi, θ) are absorbed in the constant of proportionality because they

do not depend on (μλ, ω
2
λ).

Flexible treatment of π(λ). For a nonparametric treatment of π(λ) we are essentially

replacing the Gaussian density in (15) with a mixture of normals. This implies that in

addition to specifying priors for the means and variances of the normal distributions as in

(16), we need to specify the number of mixture components and probabilities associated with

the mixture components. This leads to a truncated stick breaking (TSB) representation of

a DPM prior.

We fix the maximum number of mixture components of π(λ) at a large number K.2

Each component k, k = 1, . . . , K corresponds to a N(μk, ω
2
k) distribution. The probability

assigned to component k is denoted by πk and normalized such that
∑K

k=1 πk = 1. Then,

p(λ|π) =
K∑

k=1

πkpN

(
λ|μk, ω

2
k

)
. (19)

2In our simulations we choose K = 20. This leads to the following uniform bound on the approximation
error (see Theorem 2 of Ishwaran and James (2001)): ‖fλ,K − fλ‖ ∼ 4N exp[−(K − 1)/α] ≤ 2.24× 10−5, at
the prior mean of α (ᾱ = 1) and a cross-sectional sample size N = 1000.
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To induce a prior distribution over the random effects distribution, we need priors for the

means and variances of the mixture components, extending (16) above:

p
(
ω2

k

)
= pIG

(
ω2

k

∣
∣2, 2), p

(
μk|ω

2
k

)
= pN

(
μk|0, ω

2
k

)
, k = 1, . . . , K. (20)

The prior for the mixture probabilities πk is generated by a TSB(1, α,K) process of the

form

πk|(α,K) ∼






ζ1, k = 1,
∏k−1

j=1 (1 − ζj) ζk, k = 2, . . . , K − 1,

1 −
∑K−1

j=1 pj , k = K,

, ζk ∼ B(1, α) (21)

where B(α, β) is the Beta distribution. Finally, we use an IG prior for the hyperparameter

α of the TSB:

p(α) = pIG(α|2, 2). (22)

In order to characterize the posterior distribution, we introduce some additional notation.

Because π(λ) is a mixture, ex post, each λi is associated with one of the K mixture compo-

nents. Let γi ∈ {1, . . . , K} be the component affiliation of unit i. Moreover, let nk be the

number of units and Jk the set of units affiliated with component k. Using the component

indicator γi we can rewrite (17) as

p(λi|Yi,0:T , Y ∗
i,0:T , θ, π, γi) ∝ p(Yi,0:T |Y

∗
i,0:T )p(Y ∗

i,0:T |λi, θ)

[
K∑

k=1

I{γi = k}pN(λi|μk, ω
2
k)

]

, (23)

where I{γi = k} is the indicator function that is one if γi = k and zero otherwise. Thus,

conditional on γi the posterior of λi remains Normal. The analogue of (18) becomes:

p(μk, ω
2
k|Y1:N,0:T , Y ∗

1:N,0:T , λ1:N , θ) ∝ p(μk, ω
2
k)
∏

i∈Jk

p(λi|μk, ω
2
k). (24)

The prior probability that unit i is affiliated with component k is given by πk. Let π̄ik

denote the posterior probability conditional on the set of means μ1:k and variances ω2
1:K as

well as λi. The π̄ik’s are given by

π̄ik =
πkpN

(
λi|μk, ω

2
k

)

∑K
k=1 πkpN

(
λi|μk, ω2

k

) . (25)
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Thus,

γi|(μ1:k, ω
2
1:K , λi) = k with prob. π̄ik. (26)

Based on γ1:N one can determine nk and Jk for k = 1, . . . , N . The conditional posterior of

the component probabilities takes the form

πk|(n1:K , α,K) ∼ TSB

(

1 + nk, α +
∑

j=k+1

nj , K

)

, (27)

meaning that the ζk’s in (21) have a B
(
1 + nk, α +

∑
j=k+1 nj

)
distribution. Conditional on

π1:K the hyperparameter α has a Gamma (G) posterior distribution of the form

α|π1:K ∼ G(2 + K − 1, 2 − ln πK). (28)

Gibbs Sampling. A Gibbs sampler can be obtained by sampling from the various con-

ditional posterior distributions above. The sampler for the flexible mixture representation

of π(λ) is based on Ishwaran and James (2001, 2002). The Gibbs sampler iterates over the

following posterior distributions: the latent variables Y ∗
i,0:T in (9), the homogeneous param-

eters θ in Section 2.2, the heterogeneous parameters λi in (23), the scale parameter α of

the Dirichlet distribution in (28), the mixture weights πk in (27), the mixture component

parameters (μk, ω
2
k) in (24), and the mixture component memberships γi in (26). The Gibbs

sampler for the model with Gaussian π(λ) omits the steps to draw α, πk, and γi. Moreover,

it only has to generate a single pair (μ, ω2).

3 A Model With Heteroskedasticity

In the benchmark model (1) we assumed that the innovations uit are homoskedastic. We

now generalize this assumption to allow for heteroskedasticity:

uit
iid
∼ N(0, σ2

i ). (29)

Now σ2
i is an additional heterogeneous parameter. We will specify a prior distribution

according to which λi and σ2
i are independent of each other, i.e., π(λ, σ2) = π(λ)π(σ2). We

consider a parametric treatment of π(σ2) that can be combined with the Gaussian prior for

λ and a more flexible class of priors for σ2 that we combine with the mixture prior for λ.
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Parametric treatment of π(σ2). Here we assume that π(σ2) belongs to the Inverse Gamma

(IG) family and is indexed by the hyperparameters a and b: pIG(σ2|a, b). In specifying the

prior for the hyperparameters, we follow Llera and Beckmann (2016) and let

b ∼ G(αb, βb
), p(a|b) ∝

α
−(1+a)
a baγ

a

Γ(a)β
a

. (30)

The parameters (αa, βa
, γ

a
, αb, βb

) need to be chosen by the researcher. We use αa = 1, β
a

=

γ
a

= αb = β
b

= 0.01, which specifies relatively uninformative priors for hyperparameters a

and b. Suppose we have a sequence of observations σ2
i , i = 1, . . . , N . Then the joint posterior

for (a, b) takes the form

p(a, b|σ2
1:N ) ∝ pIG(σ2|a, b)pG(ab0, bb0)p(a|b) (31)

∝

(
ba

Γ(a)

)N
(

N∏

i=1

(
σ2

i

)−(a+1)

)

exp

{

−b
N∑

i=1

1/σ2
i

}

×bαb−1 exp
{
−β

b
b
} α

−(1+a)
a baγ

a

Γ(a)β
a

Thus, the conditional posterior of b|a takes the form of a Gamma G(ᾱb, β̄b) distribution

with parameters ᾱb = αb + Na and β̄b = β
b
+
∑N

i=1 1/σ2
i . The conditional posterior of a|b

has the same kernel as the prior with parameters ln ᾱa = ln αa +
∑N

i=1 ln σ2
i , β̄a = β

a
+ N ,

and γ̄a = γ
a

+ N . Because it is not possible to directly sample from this distribution, we

use a Metropolis-within-Gibbs sampler with a random-walk proposal density to draw from

p(a, b|σ2
1:N).3 Conditional on the hyperparameters (a, b) it is straightforward to generate

draws from the posterior of σ2
i by directly sampling from the appropriate Inverse Gamma

distributions.

Flexible treatment of π(σ2). We use the same approach as for π(λ), described in Sec-

tion 2.3. A DPM of normal distributions is used to generate a prior for ln σ2. The conditional

posteriors of hyperparameters are essentially identical to the ones that arose in the context of

π(λ). Given mixture component k, the conditional posterior distribution of σ2
i is proportional

to

p(σ2
i |∙) ∝ (σ2

i )
−1pN(ln σ2

i |μσ2,k, ωσ2
, k)

T∏

t=1

pN (yit|ρy∗
it−1 + λi, σ

2
i ). (32)

We sample from this non-standard posterior via an adaptive random walk Metropolis-

3We use an adaptive procedure based on Atchadé and Rosenthal (2005) and Griffin (2016), which adap-
tively adjusts the random walk step size to keep acceptance rates around 30%.
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Hastings (RWMH) step.

4 Generalizations

The basic dynamic panel Tobit model given by (1) and (29) can be generalized in several

dimensions. First, one can include additional covariates with a homogeneous coefficient,

which increases the dimension of the vector θ. This is done in the empirical analysis in

Section 6; see (34). Second, it is fairly straightforward to allow for randomly missing ob-

servations by modifying the inference about the latent variables yit∗ in Section 2.1. Rather

than drawing the latent variables in the data-augmentation algorithm from a truncated nor-

mal distribution, we need to draw them from a regular normal distribution. Third, we can

allow for correlated random effects by replacing the unconditional distribution π(λ) with a

conditional distribution π(λ). Liu (2017) discusses both the Normal as well as the flexible

implementation of a correlated random effects specification. It requires an adjustment to

the prior distribution of the λi’s and an adjustment in the part of the Gibbs sampler that

generates draws from the hyperparameters that index the random effects distribution.

Fourth, the panel setup can be extended to richer limited-dependent variable models.

Let Yit = [y1,it, . . . , yK,it]
′ and Y ∗

it = [y∗
1,it, . . . , y

∗
K,it]

′ and consider

yit = m(Y ∗
it ), Y ∗

it |(Y
∗
it−1, λi, θ) ∼ pY ∗

it |(Y
∗
it−1, λi, θ), (λi, Y

∗
i0)|θ ∼ π(λi, Y

∗
i0|θ), (33)

where m(∙) is a known function, p(∙) is a known homogeneous transition density for Y ∗
it ,

and π(∙) is the correlated random-effects distribution. In the benchmark model (1) the

dependent variable is a scalar, i.e., K = 1, the transformation of the latent variable is given

by m(y∗
it) = y∗

itI{y
∗
it ≥ 0}, and the transition density is N(λi + ρy∗

it, σ
2). In addition to this

standard Tobit model, Amemiya (1985) defines four generalizations. For instance, in the

so-called Type 2 Tobit model K = 2 and the m(∙) function takes the form

m(∙) : y1,it = I{y∗
1,it ≥ 0}, y2,it = y∗

2,itI{y
∗
1,it ≥ 0},

in which the censoring of observation y2,it depends on the observed sign of the latent vari-

able y∗
1,it. In order to implement richer Tobit models in our dynamic panel framework one

has to modify the sampler for the conditional posterior distribution of the latent variables

Y ∗
i,0:T |(Yi,0:T , λi, θ) described in Section 2.1. For instance, a posterior sampler for the (static)
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Type 2 Tobit model is discussed in Li and Tobias (2011). The current version of this paper

does not spell out any of these generalizations in detail, except that we allow for additional

covariates in our empirical application.

5 Monte Carlo Experiment

The Monte Carlo experiment is based on the basic dynamic panel Tobit model in (1). The

design of the experiment is summarized in Table 1. We set the autocorrelation parameter

to ρ = 0.8 and normalize the innovation variance of the uit’s to σ2 = 1. We consider

four distributions for the heterogeneous intercept λi: a normal distribution as well as three

mixtures of normals that exhibit skewness, kurtosis, and bi-modality, respectively. The

distributions are parameterized such that E[λi] = 1/2 and V[λi] = 1. The simulated panel

data sets consist of N = 1, 000 cross-sectional units and the number of time periods in the

estimation sample is T = 10. We generate one-step-ahead forecasts for period t = T + 1.

Measures of forecast accuracy are computed as follows. For the evaluation of point

forecasts (and estimators) based on forecast (estimation) error statistics (i.e, RMSE, bias,

and standard deviation), we pool all forecast errors across i = 1, . . . , N = 1, 000 and across

the nsim = 100 Monte Carlo samples Y1:N,1:T+1, which means we are averaging across 105

errors. For the evaluation of interval forecasts, density forecasts, and the probability of

YiT+1 = 0, we compute the performance statistic based on the cross-section i = 1, . . . , N =

1, 000 and then average the performance statistics over the nsim Monte Carlo samples.4

We will compare the performance of six predictors described below: the oracle predictor,

Bayes predictors derived from three versions of the dynamic panel Tobit model that differ

in terms of the treatment of π(λ), and predictors derived from pooled Tobit and pooled

linear models. The prior distributions used for the estimation of the underlying models are

summarized in Table 2.

Oracle Forecast. The oracle knows the parameters θ = (ρ, σ2) as well as the random effects

distribution π(λ). However, the oracle does not know the specific λi values.

Posterior Predictive Distributions Based on Dynamic Panel Tobit Model. We

construct posterior predictive distributions for the dynamic Tobit panel data model under

the following assumptions on π(λ): (i) π(λ) is Gaussian; see (15). (ii) π(λ) is a mixture of

4If the performance statistic is linear, e.g., the coverage probability or the average length of credible sets,
then averaging the statistic is the same as pooling across i and across Monte Carlo samples.
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Table 1: Monte Carlo Design 1

Law of Motion: y∗
it = λi + ρy∗

it−1 + uit where uit
iid
∼ N(0, σ2). ρ = 0.8, σ2 = 1

Initial Observations: y∗
i0 ∼ N(0, 1)

Random Effects Distributions:
(a) Normal: π(λi|Yi0) = pN

(
λi|12 , 1

)

(b) Skewed: π(λi|Yi0) = 1
9
pN

(
λi|52 ,

1
2

)
+ 8

9
pN

(
λi|14 ,

1
2

)

(c) Fat Tailed: π(λi|Yi0) = 4
5
pN

(
λi|12 ,

1
4

)
+ 1

5
pN

(
λi|12 , 4

)

(d) Bimodal: π(λ̃i|Yi0) = 0.35 ∙ pN

(
λ̃i|0, 1

)
+ 0.65 ∙ pN

(
λ̃i|10, 1

)
, λi = 1

2
+ (λ̃i − E[λ̃i])/

√
V[λ̃i]

Sample Size: N = 1, 000, T = 10
Number of Monte Carlo Repetitions: Nsim = 100
Fraction of zeros: (a) 31%, (b) 32%, (c) 21%, (d) 35%

normal distributions; see (19). (iii) The posterior for each unit i is computed based on the

improper prior λ ∼ U [−9.5, 10.5]. Thus, for this predictor, we do not use any cross-sectional

information to make inference about π(λ).

Pooled Tobit. This specification ignores the heterogeneity in λi, sets λi = λ for all i,

and treats λ as another homogeneous parameter, just like (ρ, σ2). Posterior sampling is

implemented by iteratively sampling from Y ∗
i,0:T |(Yi,0:T , λ, ρ, σ2) as described in Section 2.1

and from the distribution of (λ, ρ, σ2)|Y ∗
i,0:T as discussed in Section 2.2. Point, interval,

and density forecasts are obtained by generating draws y∗
iT+h from the posterior predictive

distribution and then applying the censoring yiT+h = y∗
iT+hI{y

∗
iT+h ≥ 0}.

Pooled Linear. This specification imposes heterogeneity of the λi’s, i.e., λi = λ for all i,

and, in addition, ignores the censoring of the observations, i.e., assumes yit = y∗
it. Because in

the absence of the censoring the model is linear, the posterior of (ρ, σ2, λ) belongs to the NIG

family and sampling is straightforward. To generate point, interval, and density forecasts,

we simulate trajectories from the posterior predictive distribution and apply the censoring

yiT+h = y∗
iT+hI{y

∗
iT+h ≥ 0} ex post.

Implementation Details. The estimators of the Tobit models are based on the initial

distribution y∗
i0 ∼ N(0, σ2). The Gibbs sampler for the model specification with flexible π(λ)

is initialized as follows: y∗
1:N,0:T with y1:N,0:T ; (ρ, σ2) with GMM(AB); λi with 1

T

∑T
t=1(y

∗
it −

ρy∗
it−1); α with its prior mean; γi with k-means with 10 clusters; (μk, ω

2
k, πk) are drawn

from the conditional posteriors described in Section 2.3. The Gibbs samplers for the other

specifications are special cases in which some of the parameter blocks drop out. We generate

a total of M0 +M = 10, 000 draws using the Gibbs sampler and discard the first M0 = 1, 000
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Table 2: Summary of Prior Distributions

Specification λ π(λ)
Normal π(λ) λ ∼ N(μλ, ω

2
λ) ω2

λ ∼ IG(2, 2), μλ|ω2
λ ∼ N(0, ω2

λ)

Flexible π(λ) λ ∼
∑K

k=1 πkN(μk, ω
2
k) ω2

k ∼ IG(2, 2), μk|ω2
k ∼ N(0, ω2

k)
πk ∼ TSB(1, α,K), α ∼ IG(2, 2)

Flat π(λ) λ ∼ U [−9.5, 10.5]

Pooled Tobit λ ∼ N(0, σ2)

Pooled Linear λ ∼ N(0, σ2)
Prior for θ σ2 ∼ IG(2, 2), ρ|σ2 ∼ N(0, σ2)
Heteroskedasticity σ2

i ∼ IG(a, b), prior for hyperparameters is given by (30)
(Parametric π(σ2)) with αa = 1, β

a
= γ

a
= αb = β

b
= 0.01.

Heteroskedasticity ln σ2
i ∼

∑K
k=1 πkN(μk, ω

2
k), where

(Flexible π(σ2)) ω2
k ∼ IG(2, 2), μk|ω2

k ∼ N(0, ω2
k), πk ∼ TSB(1, α,K), α ∼ IG(2, 2).

draws.

Point Forecasts and Parameter Estimates. In 3 we report root-mean-squared errors

(RMSEs) for posterior mean point forecasts. We decompose the RMSEs into a bias and stan-

dard deviation component. We also report the average point estimates of ρ and σ2 across

the repetitions of the Monte Carlo experiment. The results for the oracle serve as a bench-

mark. For all four DGPs the predictors obtained under the flat prior for λ are dominated

by the predictors that estimate π(λ) from the cross-sectional distribution. Modeling π(λ)

as Gaussian distribution works well under Gaussian, skewed, and fat-tailed random effects.

For the bi-modal random effects DGP, the predictor obtained by approximating π(λ) with a

mixture of normals dominates the Gaussian predictor. The pooled linear specification per-

forms significantly worse than all competitors because it ignores the censoring which leads

to a large bias. For all but the pooled linear estimator and, in some instances the predictor

obtained under a flat prior for λ, the bias component of the RMSE is negligible.

Each model delivers a forecast of the probability that yiT+1 = 0. We use this probability

as a point forecast of I{yiT+1 = 0} and compute the corresponding RMSEs, which are also

reported in 3. The RMSE differential between the first five model specifications is negligible.

The predictor derived from the pooled linear model performs significantly worse than the

other predictors in all four Monte Carlo designs. We also computed RMSEs for a perfect

predictor that is constructed based on knowing each (λi, y
∗
iT ) in addition to θ. The values
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Table 3: Monte Carlo Experiment: Point Forecast Performance

Forecast Error Stats θ Estimates
RMSE Bias StdD RMSE I{yiT+1 = 0} Bias(ρ̂) Bias(σ̂2)

(a) Gaussian Random Effects
Oracle 0.85 .004 0.85 0.22 N/A N/A
Normal π(λ), estimated θ 0.85 .004 0.85 0.22 0 0
Flexible π(λ), estimated θ 0.85 .003 0.85 0.22 0 0
Flat π(λ), estimated θ 0.85 0.07 0.85 0.22 -0.08 0
Pooled Tobit 0.88 -0.18 0.86 0.22 0.22 0.37
Pooled Linear 0.93 -0.32 0.87 0.36 0.21 -0.15

(b) Skewed Random Effects
Oracle 0.83 .005 0.83 0.25 N/A N/A
Normal π(λ), estimated θ 0.83 -0.01 0.83 0.24 0 0.01
Flexible π(λ), estimated θ 0.83 -0.01 0.83 0.24 0.01 0.01
Flat π(λ), estimated θ 0.84 0.05 0.84 0.25 -0.08 0.01
Pooled Tobit 0.88 -0.19 0.85 0.25 0.23 0.42
Pooled Linear 0.92 -0.34 0.85 0.37 0.22 -0.13

(c) Fat-tailed Random Effects
Oracle 0.89 0.02 0.89 0.24 N/A N/A
Normal π(λ), estimated θ 0.89 -0.01 0.89 0.24 0 0.01
Flexible π(λ), estimated θ 0.89 -0.02 0.89 0.24 0.01 0.02
Flat π(λ), estimated θ 0.89 0.07 0.89 0.24 -0.09 0
Pooled Tobit 0.92 -0.19 0.90 0.24 0.21 0.34
Pooled Linear 0.95 -0.30 0.90 0.33 0.21 -0.09

(d) Bi-modal Random Effects
Oracle 0.82 .004 0.82 0.08 N/A N/A
Normal π(λ), estimated θ 0.84 0.03 0.84 0.09 0 -0.02
Flexible π(λ), estimated θ 0.82 0.02 0.82 0.08 -0.01 -0.01
Flat π(λ), estimated θ 0.85 0.09 0.85 0.09 -0.07 -0.01
Pooled Tobit 0.88 -0.15 0.86 0.10 0.22 0.35
Pooled Linear 0.92 -0.29 0.88 0.38 0.18 0.17

Notes: The design of the experiment is summarized in 1. The true values for ρ and σ2 are 0.8 and 1.0,
respectively.

are 0.20, 0.23, 0.23, and 0.08, respectively, and thus slightly smaller than the oracle which

only knows π(λ) but not (λi, y
∗
iT ) for each unit.5

Finally, the last two columns of 3 show the means of the Bayes estimators of ρ and σ2.

5If Y ∈ {0, 1} and the probability of Y = 0 is p, then the RMSE associated with the optimal forecast
̂I{Y = 0} = 1 − p is

√
p(1 − p) ≤ 0.5.
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Recall that the true values are 0.8 and 1.0, respectively. Because the oracle is assumed to

know the two parameters, we report N/A. The Bayes estimators from the panel Tobit model

under the Normal and the flexible prior are unbiased. Under the flat prior, the estimate of

the autocorrelation parameter ρ is downward biased. Its mean across the Monte Carlo

repetitions is 0.71 instead of 0.80. The estimators of ρ obtained from the pooled Tobit and

pooled linear specifications are around 1.0 and thus strongly upward biased.

The panels of Figure 1 show true RE densities π(λ), estimated densities π̂(λ), and his-

tograms of the point estimates E[λi|Y1:N,0:T ]. The panels of the left are obtained under the

assumption that π(λ) is Normal and the panels on the right correspond to specification with

a flexible π(λ). The four rows of the figure correspond to the four Monte Carlo designs.

Under the Normal RE distribution the estimates π̂(λ) under the Normal and the flexible

prior are essentially identical and match the true π(λ). Under the other three experimental

designs the two density estimates π̂(λ) are different and this difference is most pronounced

in the bi-modal RE setting. In all of these cases the flexible estimate of π̂(λ) continues to

deliver a good approximation of the λi distribution.

To interpret the histograms of E[λi|Y1:N,0:T ] in view of the plotted π(λ), we will consider

two stylized examples that capture important aspects of our setup. First, suppose that

the model is linear, i.e., yit = λi + uit and λi ∼ N(μλ, ω
2), and the hyperparameters are

known. Therefore, λ̂i ∼ N
(
μλ, ω

2 + σ2/T
)

and the posterior means have the cross-sectional

distribution

E[λi|Y1:N,1:T ] =
T/σ2

T/σ2 + 1/ω2
λ̂i +

1/ω2

T/σ2 + 1/ω2
μλ ∼ N

(

μλ, ω
2 ω2

ω2 + σ2/T

)

.

In this example, the distribution of the posterior mean estimates is less dispersed than

the distribution of the λi’s, but centered at the same mean. In our design (a) we have

ω2 = σ2 = 1 and T = 10. This implies that the standard deviation of the posterior mean

estimates should be 5% smaller than the standard deviation of the λi’s, which is visually

consistent with Figure 1.

Second, to understand the effect of censoring, suppose that y∗
it = λi + uit and we ob-

serve a sequence of zeros. The likelihood associated with this sequence of zeros is given by

ΦT
N(−λi/σ). The posterior mean for a sequence of zeros is then given by

E[λi|Y1:N,1:T = 0] =

∫
λΦT

N (−λ/σ)π(λ)dλ
∫

ΦT
N(−λ/σ)π(λ)dλ
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Figure 1: Estimates E[λi|Y1:N,0:T ] and Estimated Random Effects Distributions

Normal RE: Normal π(λ) Normal RE: Flexible π(λ)

Skewed RE: Normal π(λ) Skewed RE: Flexible π(λ)

Fat-tail RE: Normal π(λ) Fat-tail RE: Flexible π(λ)

Bi-modal RE: Normal π(λ) Bi-modal RE: Flexible π(λ)
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Table 4: Monte Carlo Experiment: Interval Forecast and Density Forecast Performance

Interval Forecast Density Forecast
Cover Freq CI Len LPS CRPS

(a) Normal Random Effects
Oracle 0.91 2.23 -1.08 0.40
Normal π(λ), estimated θ 0.91 2.22 -1.08 0.40
Flexible π(λ), estimated θ 0.91 2.22 -1.08 0.40
Flat π(λ), estimated θ 0.91 2.23 -1.10 0.41
Pooled Tobit 0.93 2.51 -1.12 0.42
Pooled Linear 0.93 2.74 -1.31 0.47

(b) Skewed Random Effects
Oracle 0.91 2.14 -1.08 0.40
Normal π(λ), estimated θ 0.91 2.15 -1.08 0.40
Flexible π(λ), estimated θ 0.91 2.15 -1.08 0.40
Flat π(λ), estimated θ 0.91 2.15 -1.10 0.40
Pooled Tobit 0.93 2.45 -1.12 0.42
Pooled Linear 0.93 2.67 -1.30 0.46

(c) Fat-tailed Random Effects
Oracle 0.90 2.44 -1.20 0.45
Normal π(λ), estimated θ 0.90 2.44 -1.20 0.45
Flexible π(λ), estimated θ 0.90 2.45 -1.20 0.45
Flat π(λ), estimated θ 0.90 2.43 -1.22 0.45
Pooled Tobit 0.92 2.72 -1.23 0.46
Pooled Linear 0.92 2.90 -1.35 0.50

(d) Bi-modal Random Effects
Oracle 0.93 2.17 -0.96 0.38
Normal π(λ), estimated θ 0.93 2.22 -0.99 0.39
Flexible π(λ), estimated θ 0.93 2.19 -0.96 0.38
Flat π(λ), estimated θ 0.93 2.24 -0.99 0.39
Pooled Tobit 0.95 2.50 -1.03 0.40
Pooled Linear 0.93 2.79 -1.31 0.47

and provides a lower bound for the estimator λ̂i. If the λi’s are sampled from the prior, we

should observe this posterior mean with probability
∫

ΦT
N

(
− λ/σ

)
π(λ)dλ. Thus, according

to this example, there should be a spike in the left tail of the distributions of E[λi|Y1:N,1:T ].

Such spikes are clearly visible in the panels of Figure 1.

Interval and Density Forecasts. The dynamic panel Tobit model generates a poste-

rior predictive density for yiT+1 from which one can derive interval and density forecasts.
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Both types of forecasts reflect parameter uncertainty, potential uncertainty about y∗
iT , and

uncertainty about future shocks. To assess the interval forecasts we compute the coverage

frequency and the average length of 90% predictive intervals. As a measure of density forecast

accuracy we evaluate compute log predictive scores p(yiT+1|Y1:N,1:T ) as well as the contin-

uous ranked probability score (CRPS). The CRPS measures the L2 distance between the

cumulative density function (cdf) associated with p(yiT+1|Y1:N,1:T ) and a “perfect” density

forecasts which assigns probability one to the realized yiT+1.

The results are summarized in 4. Under the Normal RE, the skewed RE, and the fat-

tailed RE designs the coverage frequencies for the panel Tobit models are very close to the

nominal coverage probability of 90%. Under the bi-modal RE design, they are slightly larger

(93%). The coverage frequencies of the interval predictions derived from the pooled Tobit

and pooled linear specifications generally exceed the nominal coverage frequency. For the

first three simulation designs the average lengths of the panel Tobit intervals are generally

very close to the length of the oracle forecasts, indicating that parameter uncertainty does

not play a significant role. Except for the last design, in which the Normal RE distribution

is grossly misspecified, the performance of the predictors under Normal and flexible π(λ) are

generally similar. The interval predictions obtained from the pooled Tobit and pooled linear

specifications are clearly inferior because the average lengths of the intervals are much larger

than for the specifications with heterogeneous λi.

The density forecast rankings mirror the interval forecast rankings. Note that we prefer

forecasts with a high LPS and a low CRPS. The forecasts derived from the estimated dynamic

panel Tobit models are (almost) as good as the oracle density forecasts. The pooled Tobit

and pooled linear forecasts, on the other hand, tend to be substantially worse than the oracle

forecasts.

6 Empirical Analysis

We will now use the dynamic panel Tobit model to forecast loan charge-off rates for a panel

of “small” banks, which we define to be banks with total assets of less than one billion

dollars. For these banks it is reasonable to assume that they operate in local markets. Thus,

we will use local economic indicators as additional predictors. A detailed description of the

data set is provided in the Online Appendix.



This Version: March 4, 2018 22

6.1 Model Specification

Starting point is a homoskedastic random effects model:

yit = y∗
itI{y

∗
it ≥ 0}, i = 1, . . . , N, t = 0, . . . , T (34)

y∗
it = λi + ρy∗

it−1 + β1 ln HPIit + β2URit + uit, uit
iid
∼ N(0, σ2), y∗

i0 ∼ N(μi∗, σ
2
∗),

where yit are charge-off rates, HPIit is a house price index, and URit is the unemployment

rate. The subsequent results are based on μi∗ = 0 and σ2
∗ = σ2.

The time period is one quarter. In addition, we also consider a heteroskedastic law of

motion for y∗
it with

uit
iid
∼ N(0, σ2

i ), y∗
i0 ∼ N(μi∗, σ

2
i∗). (35)

The charge-off rates are measured in annualized percentages. The distribution of charge-

off rates is highly skewed. In any given quarter at least 30% of the banks report zero

charge-offs. The cross-sectional means of the charge-off rates range from 0.2% to 3.4%. The

75th quantiles range from 0% to 4.8%. The maximum, in many quarters, reaches 400% (we

eliminated observations for which the charge-off rates were larger than the annualized 400%).

A with summary statistics for the charge-off data is provided in the Online Appendix.

6.2 Estimation Results

We begin by inspecting some of the parameter estimates. We focus on a sample of credit

card charge-off rates that starts in 2001Q2 and ends in 2003Q4. The first period, 2001Q2

is used to initialize the lag in the dynamic specification. Thus, T = 10. We use the esti-

mates to construct one-step-ahead forecasts for 2004Q1. We consider the same estimators

as in the Monte Carlo experiments of Section 5 and, with three qualifications, use the prior

distributions listed in 2.

First, while the Monte Carlo experiment assumed homoskedasticity, in the empirical

analysis we also allow for heteroskedasticity. The last row of Table 2 describes the distri-

bution of the σ2
i and its hyperparameters. Second, the homogeneous parameter vector θ

now comprises (ρ, β1, β2, σ
2). The prior for (ρ, β1, β2)|σ2) is N(0, σ2I) for the homoskedas-

tic model and N(0, I) for the heteroskedastic model. Third, some extra care is necessary

for the construction of a flat prior π(λ). If the domain of this prior is too large, then

for some units the posterior sampler becomes unreliable. If the domain is too small, then
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the prior adds information to the estimation of the heterogeneous coefficient. We con-

struct bounds for the uniform distribution as follows: (i) we replace y∗
it by yit and use a

fixed-effect GMM estimator to get approximate estimates of the common coefficients β̂.

(ii) We then average the residuals to obtain estimates of the heterogeneous intercepts:

λ̂i = 1
T

∑T
t=1(yit − (ρ̂yit−1 + β̂1 ln HPIit + β̂2URit)). (iii) Finally, we set the bounds for

the uniform distribution to mean(λ̂i) ± 10StdD(λ̂i). For instance, in the 2001Q2 to 2003Q4

credit-card charge-off rate sample these bounds are -42.3 and 36.4, respectively.

Parameter estimates (posterior means and credible sets) are reported in Table 5. We

estimate some mild serial correlation. The estimates vary across specifications. The largest

estimates of ρ, 0.53 and 0.67, are obtained from the pooled estimators. The credit card

charge-off rates essentially do not respond to house prices. A house price increase of 1%

corresponds to Δ ln HPIit = 0.01, which under the homoskedastic model with flexible π(λ)

prior translates into a 0.01∙0.15 percentage increase in annualized charge-off rates. Moreover,

for most of the specifications, the credible intervals of the house-price coefficient cover zero.

The response to the unemployment rate is also generally small. A coefficient of one implies

that a one percent increase in the unemployment rate (ΔURit = 0.01 because we divided

the unemployment rate by 100) raises the charge-off rate by 0.01%. The sign of the β2 point

estimates does not conform with economic intuition. An increase in unemployment seems

to lower rather than raise the charge-off rates. However, all but one interval cover zero. The

estimated shock variances in the homoskedastic specification are large because they have to

capture occasionally large charge-off rates.

Each panel of Figure 2 depicts a histogram for E[λi|Y1:N,0:T ] and hairlines that represent

draws from the posterior distribution of π(λ)|Y1:N,0:T . The graphs differ from Figure 1 in two

dimensions. First, the population object π(λ) is unknown and therefore cannot be displayed.

Second, the point estimator π̂(λ) is replaced by draws from the posterior distribution of the

RE distribution to illustrate estimation uncertainty. The results in the top right and the

two bottom panels are very similar. The posterior mean estimates from λi range from about

-5 to 10. The histograms peak around 2 and have a spike in the left tail at around -3. The

spikes are a consequence of the censoring in our model. We also observe that the distribution

of the posterior mean estimates is more concentrated than the estimated RE distributions.

These features are consistent with the simplified examples discussed in Section 5. The

results from the homoskedastic model with Gaussian RE distribution shown in the top left

panel are different. Here there is a mass for values of E[λi|Y1:N,0:T ] between -80 and -60

and the estimates of the π(λ) distributions are much more diffuse. Even though we are not



This Version: March 4, 2018 24

T
ab

le
5:

P
ar

am
et

er
E

st
im

at
es

E
st

im
at

or
E

[ρ̂
]

E
[β̂

1
]

E
[β̂

2
]

E
[σ̂

2
]

(y
∗ it
−

1
)

(l
n

H
P

I i
t)

(U
R

it
)

C
re

d
it

C
ar

d
C

h
ar

ge
-O

ff
R

at
es

–
H

om
os

ke
d
as

ti
c

M
o
d
el

s
N

or
m

al
π
(λ

)
0.

17
[0

.0
9,

0.
24

]
0.

05
[-
0.

04
,0

.1
5]

-1
.9

0
[-
8.

69
,4

.9
0]

19
.7

3
[1

8.
86

,2
0.

67
]

F
le

x
ib

le
π
(λ

)
0.

27
[0

.2
4,

0.
31

]
0.

15
[0

.0
6,

0.
24

]
-2

.9
9

[-
9.

93
,3

.8
5]

20
.5

9
[1

9.
67

,2
1.

56
]

F
la

t
π
(λ

)
0.

16
[0

.1
3,

0.
20

]
0.

07
[-
0.

01
,0

.1
5]

-4
.8

3
[-
11

.6
8,

2.
00

]
20

.1
5

[1
9.

48
,2

0.
87

]
P
o
ol

ed
T
ob

it
0.

67
[0

.6
4,

0.
70

]
0.

19
[-
0.

26
,0

.6
4]

-3
.6

7
[-
10

.3
7,

3.
03

]
28

.8
1

[2
7.

29
,3

0.
43

]
P
o
ol

ed
L
in

ea
r

0.
53

[0
.5

2,
0.

54
]

0.
15

[-
0.

21
,0

.5
1]

-7
.5

5
[-
12

.9
5,

-2
.1

6]
19

.1
4

[1
8.

67
,1

9.
62

]
C

re
d
it

C
ar

d
C

h
ar

ge
-O

ff
R

at
es

–
H

et
er

os
ke

d
as

ti
c

M
o
d
el

s
N

or
m

al
π
(λ

),
In

v
G

am
π
(σ

2
)

0.
12

[0
.0

9,
0.

15
]

-.
00

2
[-
0.

03
,0

.0
2]

-0
.0

3
[-
1.

64
,1

.5
9]

N
/A

F
le

x
ib

le
π
(λ

),
π
(σ

2
)

0.
17

[0
.1

3,
0.

23
]

.0
04

[-
0.

02
,0

.0
3]

0.
08

[-
1.

62
,1

.7
7]

N
/A

N
ot

es
:

T
he

es
ti
m

at
io

n
sa

m
pl

e
ra

ng
es

fr
om

20
01

Q
2

to
20

03
Q

4
(T

=
10

).
T

he
ta

bl
e

co
nt

ai
ns

p
os

te
ri

or
m

ea
n

pa
ra

m
et

er
es

ti
m

at
es

as
w

el
l

as
90

%
cr

ed
ib

le
in

te
rv

al
s

in
br

ac
ke

ts
.



This Version: March 4, 2018 25

Figure 2: Posterior Means vs. Estimated Random-Effects Distributions

Normal π(λ) Flexible π(λ)

Normal π(λ), InvGam π(σ2) Flexible π(λ), π(σ2)

Notes: The figure depicts histograms for E[λi|Y1:N,0:T ], i = 1, . . . , N for four different model specifications.
The shaded areas are obtained by generating draws from the posterior distribution of the random effects
density: π(λ)|Y1:N,0:T . The estimation sample for the dynamic Tobit models ranges from 2001Q2 to 2003Q4
(T = 10).

conducting a formal specification test at this stage, we view this as evidence that the fit

of the homoskedastic model with Normal π(λ) is not as good as the fit of the other three

specifications.
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Figure 3: Posterior Means vs. Estimated Random-Effects Distributions

Normal π(λ), InvGam π(σ2) Flexible π(λ), π(σ2)

Notes: The panels depict histograms for ln E[σ2
i |Y1:N,0:T ], i = 1, . . . , N . The shaded areas are obtained by

generating draws from the posterior distribution of the random effects density: π(σi)|Y1:N,0:T . The estimation
sample for the dynamic Tobit models ranges from 2001Q2 to 2003Q4 (T = 10). The point estimates under
the homoskedastic specifications reported in Table correspond to 2.98 (Normal π(λ)) and 3.02 (Flexible
π(λ)), respectively, and are indicated using red vertical lines.

In Figure 3 we overlay the posterior means E[σ2
i |Y1:N,0:T ] as well as draws from the pos-

terior distribution π(σ2)|Y1:N,0:T for model specifications with heteroskedasticity. The shape

of the histogram mimics the shape of the densities, except for the pronounced spike of the

histogram near ln σ2
i = 2. We generated bivariate scatter plots of λ̂i and ln σ̂2

i (shown in

the Online Appendix) that illustrate that the spikes in the histograms depicted in Figures 2

and 3 correspond to the same units. The point estimates of σ2 for the homoskedastic model

specifications, translated into the log scale of Figure 3, are 2.98 (Normal π(λ)) and 3.02

(Flexible π(λ)), respectively. The density plots indicate that the assumption of homoskedas-

ticity is quite restrictive: for some banks the estimated innovation variances are greater than

four, whereas for others they are less than one.

6.3 Forecasting Performance for Credit Card Charge-Off Rates

Point Forecast Evaluation. Point forecast error statistics are reported in Table 6. The

homoskedastic versions of the Normal and the flexible random effects model perform well.
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Table 6: Point Forecast Performance

Estimator RMSE Bias StdD RMSE(yiT+1 = 0)
Credit Card Charge-Off Rates – Homoskedastic Models

Normal π(λ) 4.24 -0.55 4.20 0.41
Flexible π(λ) 4.23 -0.48 4.20 0.41
Flat π(λ) 4.37 -0.56 4.33 0.41
Pooled Tobit 4.54 -0.64 4.49 0.44
Pooled Linear 4.72 -1.20 4.57 0.48

Credit Card Charge-Off Rates – Heterokedastic Models
Normal π(λ), InvGam π(σ2) 4.76 -0.03 4.76 0.39
Flexible π(λ), π(σ2) 4.76 -0.02 4.76 0.39

Notes: The estimation sample ranges from 2001Q2 to 2003Q4 (T = 10). We forecast the observation in
2004Q1. The last column reports the RMSE for the probability forecast of a zero charge-off.

Under the flat prior, the RMSE increases. The pooled Tobit and pooled linear specifica-

tions perform noticeably worse than the homoskedastic random effects specifications. The

heteroskedastic specifications are associated with the largest RMSEs. The last column of

Table 6 reports the RMSE for the probability forecast of I{yiT+1 = 1}. The models with

Normal, flexible, and flat priors perform similarly and attain RMSEs for the event fore-

casts of approximately 0.41. The pooled Tobit model and the pooled linear model perform

worse.6 The best predictions of a zero charge-off are generated by the two heteroskedastic

specifications.

To gain a deeper understanding of the RMSE statistics, we plot bank-level forecast

errors in Figure 4. The two panel of the figures show scatter plots of the forecast errors

under the homoskedastic (x-axis) and the heteroskedastic (y-axis) model specifications. Due

to the censoring, the distribution of forecast errors is skewed to the right. Note that for

a few institutions, the forecast errors are very large (and positive). For those banks the

heteroskedastic predictor tends to perform significantly worse.

Abstracting from the effect of censoring, the posterior mean of λi is a linear combination

of the MLE and the prior mean. The relative weights depend on the relative precision of

likelihood and prior. At least for the flexible specification, see Figure 2 the estimated π(λ) are

quite similar under homoskedasticity and heteroskedasticity. Thus, the key difference in the

predictors is due to the precision of the likelihood. Under the heteroskedastic specifications,

6Recall that we censor the draws from the posterior predictive distribution of the pooled linear model,
which leads to a non-trivial probability of a zero charge-off.
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Figure 4: Scatter Plot of Forecast Errors

Normal π(λ) vs Normal π(λ), InvGam π(σ2) Flexible π(λ) vs Flexible π(λ), π(σ2)

Notes: The panels depict scatter plots of bank-level forecast errors of the homoskedastic (x-axis) versus
heteroskedastic (y-axis) specification under a parametric and a flexible prior distribution, respectively. We
overlay 45-degree lines in each panel.

there are several banks for which σ̂2
i is large, which means that the precision of the likelihood

is low and the forecast is essentially generated from the prior mean of λ. This seems to

generate poor forecast performance, compared to the homoskedastic predictor which imposes

less shrinkage on these extreme observations. In the Online Appendix, we provide scatter

plots of forecast error differentials versus ln σ̂2
i that confirm this conjecture.

Interval and Density Forecast Evaluation. Interval and density forecast results are

presented in Table 7. The coverage frequency is close to the nominal coverage probability

of 90% for all forecasts, except the ones from the pooled linear specification. In terms of

striking a good balance between coverage probability and length of the confidence interval,

the heteroskedastic specifications clearly come out ahead. The heteroskedastic specifications

also come out ahead in terms of log probability score and continuous ranked probability

score. The differences between the parametric and the flexible specification are very small

across all criteria.

Histograms of probability integral transforms (PIT) are plotted in Figure 5. If the density

forecasts are perfectly calibrated, then the PITs should be uniform. Because we are using 20
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Table 7: Interval Forecast and Density Forecast Performance

Interval Forecast Density Forecast
Estimator Cover Freq CI Len LPS CRPS

Credit Card Charge-Off Rates – Homoskedastic Models
Normal π(λ) 0.92 7.90 -2.19 1.83
Flexible π(λ) 0.92 7.89 -2.20 1.82
Flat π(λ) 0.92 7.97 -2.22 1.86
Pooled Tobit 0.92 8.84 -2.28 1.98
Pooled Linear 0.93 9.96 -2.39 2.11

Credit Card Charge-Off Rates – Heteroskedastic Models
Normal π(λ), InvGam π(σ2) 0.89 6.88 -1.94 1.71
Flexible π(λ), π(σ2) 0.88 6.84 -1.96 1.71

Notes: The estimation sample ranges from 2001Q2 to 2003Q4 (T = 10). We forecast the observation in
2004Q1.

bins for the histogram, uniformity would imply a mass of 5% (indicated by the horizontal line)

for each bin. For all model specifications, it appears that the distribution of the PITs differs

from the uniform distribution. The heteroskedastic model with a flexible π(λ)π(σ2) seems to

come closes to the uniform benchmark. In general, the frequency of PITs between 0 and 0.3

in the bottom panels is higher than the target value. This means we are overpredicting the

frequency of zero and low charge-off rates. Note that the probability of a zero is relatively

strongly influenced by prior.

6.4 Forecasting Performance for Other Samples

We now generate forecast error statistics for other charge-off rates and other sample periods.

The total number of samples is 54. Figure 6 consists of two scatter plots that compare

RMSEs for predictors derived from homoskedastic and heteroskedastic specifications. The

plot on the left refers to the specification in which π(λ) and π(σ2) are represented by a

Normal and an Inverse Gamma distribution, respectively. The plot on the right corresponds

to specifications in which the RE distributions are flexible. In order to make the RMSEs

comparable across different samples, we normalize them by the RMSE of the (homoskedastic)

pooled linear specification. For instance, a value of 0.9 means that the RMSE obtained from

the panel Tobit model is 10% smaller than the RMSE from the pooled linear specification.

According to Figure 6, the homoskedastic panel Tobit predictors tend to dominate the



This Version: March 4, 2018 30

Figure 5: Probability Integral Transforms

Normal π(λ) Flexible π(λ)

Normal π(λ), InvGam π(σ2) Flexible π(λ), π(σ2)

Notes: The panels depict histograms of probability integral transforms.

predictions from the pooled linear specification in all but four samples. In about 20 of the

samples, the pooled linear predictors seem to perform better than the heteroskedastic panel

Tobit predictors. The majority of the points in the scatter plot lie above the 45 degree line,

which means that imposing homoskedasticity tends, on average, generate better forecasts.

We saw this already for the credit card charge-off rates in Section 6.3.

Figure 7 shows scatter plots for log probability score and CRPS differentials relative to

forecasts from the pooled Tobit specification. Recall that positive LPS and negative CRPS

favor the heterogeneous coefficient models. In terms of density forecasts the heteroskedastic
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Figure 6: RMSE Ratios

Normal π(λ), InvGam π(σ2) Flexible π(λ), π(σ2)

Notes: The panels compare the RMSEs of posterior mean predictors derived under the parametric prior and
the flexible prior for the heterogeneous coefficients for homoskedastic and heteroskedastic specifications. We
also show the 45-degree line. RMSEs are depicted as ratios relative to the RMSE obtained by the pooled
linear specification.

specifications perform consistently better than the homoskedastic specifications across the

54 samples. Moreover, because the LPS values are almost all positive and the CRPS values

are almost all negative, we deduce that the pooled Tobit predictor is clearly inferior.

7 Conclusion

The limited dependent variable panel with unobserved individual effects is a common data

structure but not extensively studied in the forecasting literature. This paper constructs

forecasts based on a flexible dynamic panel Tobit model to forecast individual future out-

comes based on a panel of censored data with large N and small T dimensions. Our empirical

application to loan charge-off rates of small banks shows that the flexible predictors provide

more accurate point, interval, and density forecasts than naive competitors, which consti-

tutes a helpful tool for bank supervision. Our framework can be extended to dynamic panel

versions of more general multivariate censored regression models. We can also allow for

missing observations in our panel data set. Finally, even though we focused on the analysis

of charge-off data, there are many other potential applications for our methods.
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Figure 7: Density Forecast Evaluations

Normal π(λ), InvGam π(σ2) Flexible π(λ), π(σ2)
Log Probability Score

CRPS

Notes: The panels compare the log probability scores (top) and CRPS (bottom) of density forecasts derived
under the parametric prior and the flexible prior for the heterogeneous coefficients for homoskedastic and
heteroskedastic specifications. We also show the 45-degree line. Log probability scores and CRPS are
depicted as differentials relative to pooled Tobit.
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Supplemental Appendix to “Forecasting with a Panel
Tobit Model”

Laura Liu, Hyungsik Roger Moon, and Frank Schorfheide

A Data Set

Charge-off rates. The raw data are obtained from the website of the Federal Reserve Bank

of Chicago:

https://www.chicagofed.org/banking/financial-institution-reports/commercial-bank-data.

The raw data are available at a quarterly frequency. The charge-off rates are defined as

charge-offs divided by the stock of loans and constructed in a similar manner as in Tables

A-1 and A-2 of Covas, Rump, and Zakrajsek (2014). However, the construction differs in

the following dimensions: (i) We focus on charge-off rates instead of net charge-off rates. (ii)

We standardize the charge-offs by the lagged stock of loans instead of the current stock of

loans to reduce the timing issue.7 (iii) For banks with domestic offices only (Form FFIEC

041), RIAD4645 (CI numerator) is not reported, so we switch to the corresponding variable

RIAD4638.

The charge-offs are reported as year-to-date values. Thus, in order to obtain quarterly

data, we take differences: Q1 7→ Q1, (Q2−Q1) 7→ Q2, (Q3−Q2) 7→ Q3, and (Q4−Q3) 7→

Q4. The loans are stock variables and no further transformation is needed. We multiply the

charge-off rates by 400 to convert them into annualized percentages. We construct charge-off

rates for the following types of loans:

• CI = commercial & industrial;

• CLD = construction & land development;

• MF = multifamily real estate;

• CRE = (nonfarm) nonresidential commercial real estate;

• HLC = home equity lines of credit (HELOCs);

• RRE = residential real estate, excluding HELOCs;

7According to bank report forms (e.g. FFIEC 041), the stocks of loans are given by quarterly averages.
“For all items, banks have the option of reporting either (1) an average of DAILY figures for the quarter, or
(2) an average of WEEKLY figures (i.e., the Wednesday of each week of the quarter).”
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• CC = credit card;

• CON = consumer, excluding credit card loans.

Because in our econometric model we are relating the charge-off rates to local economic

conditions, we restrict our analysis to “small” banks that operate in well-defined local mar-

kets. We include a bank in the sample if its assets are below one billion dollars. The raw

data set contains missing observations and outliers that we are unable to explain with our

econometric model. Thus, we proceed as follows to select a subset of observations from the

raw data:

1. Eliminate banks for which domestic total assets are missing for all time periods in the

sample.

2. Compute average non-missing domestic total assets and eliminate banks with average

assets above 1 billion dollars.

3. For each loan category, eliminate banks for which the target charge-off rate is missing

for at least one period of the sample.

4. For each loan category, eliminate banks for which the target charge-off rate is negative

or greater than 400% for at least one period of the sample.

5. For loan category proceed as follows: First, for each bank, drop the two largest observa-

tions yit, t = 0, ∙ ∙ ∙ , T +1, and calculate the standard deviation (stdd) of the remaining

observations. Then, eliminate a bank if any successive change |yit−yit−1|+|yit+1−yit| >

10stdd. For t = 0 and t = T + 1, we only have one of the two terms and we set the

other term in this selection criterion to zero.

The remaining sample sizes after each of these steps for the credit card loan charge-off rates

as well as some summary statistics are reported in Table A-1.

Local Market. We use the annual Summary of Deposits data from the Federal Deposit

Insurance Corporation to determine the local market for each bank. This data set contains

information about the locations (at ZIP code level) in which deposits were made. Based on

this information, for each bank in the charge-off data set we compute the amount of deposits

received by state. We then associate each bank with the state from which it received the

largest amount of deposits.
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Unemployment Rate (URit). Obtained from the Bureau of Labor Statistics. We use

seasonally adjusted monthly data, time-aggregated to quarterly frequency by simple averag-

ing. We divide the unemployment rate by 100 so that its variation is in the same order of

magnitude as the house-price variation.

Housing Price Index (HPIit). Obtained from the Federal Housing Finance Agency on

all transactions, not seasonally adjusted. The index is available at a quarterly frequency.

B Computational Details

B.1 Forecasts and Forecast Error Statistics

For each unit i, the posterior sampler generates draws (y∗j
iT , θj , λj

i ), j = 1, . . . ,M , from

the posterior distribution p(y∗
iT , θ, λi|Y1:N,0:T ). Conditional on the parameter draws, the

predictive density is a censored normal distribution. Define

μj
iT+h|T = λj

i

h−1∑

l=0

(
ρj
)l

+
(
ρj)hy∗j

iT , σ2,j
iT+h|T = σ2,j

h−1∑

l=0

(
ρj
)2l

. (A.1)

Then, a draw from the predictive distribution can be generated according to

y∗j
iT+h|(y

∗j
iT , θj , λj

i ) ∼ N
(
μj

iT+h|T , σ2,j
iT+h|T

)
, yj

iT+h = y∗j
iT+hI{y

∗j
iT+h ≥ 0}. (A.2)

The expected value of the censored random variable yj
iT is given by

E
[
yj

iT+h|(y
∗j
iT , θj , λj

i )
]

(A.3)

=

[

μj
iT+h|T + σj

iT+h|T

φN

(
μj

iT+h|T /σj
iT+h|T

)

ΦN

(
μj

iT+h|T /σj
iT+h|T

)

]

ΦN

(
μj

iT+h|T /σj
iT+h|T

)

= μj
iT+h|T ΦN

(
μj

iT+h|T /σj
iT+h|T

)
+ σj

iT+h|T φN

(
μj

iT+h|T /σj
iT+h|T

)
,

where φN (∙) and ΦN(∙) are the pdf and the cdf of a standard N(0, 1). The probability of

observing a zero is

P
[
yj

iT+h = 0|(y∗j
iT , θj , λj

i )
]

= ΦN

(
− μj

iT+h|T /σj
iT+h|T

)
. (A.4)
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Mean forecasts and forecasts of observing a zero can be approximated by Monte Carlo

averaging:

E
[
yiT+h|Y1:N,0:T

]
≈

1

M

M∑

j=1

E
[
yj

iT+h|(y
∗j
iT , θj , λj

i )
]

(A.5)

P
[
yiT+h = 0|Y1:N,0:T

]
≈

1

M

M∑

j=1

P
[
yj

iT+h = 0|(y∗j
iT , θj , λj

i )
]
. (A.6)

The log-predictive density can be approximated by

ln p
(
yiT+h|Y1:N,0:T

)
≈






lnP
[
yiT+h = 0|Y1:N,0:T

]
if yiT+h = 0

ln
(

1
M

∑M
j=1 pN

(
yiT+h|μ

j
iT+h|T , σ2,j

iT+h|T

))
otherwise

. (A.7)

1 − α Credible intervals can be obtained as follows: (i) sort {yj
iT+h}

M
j=1 in increasing order

and denote the elements of the sorted sequence by y
(j)
iT+h. (ii) For j = 1 to bαMc, compute

the length of the j’th connected 1−α interval Δ(j) = y
(j+b(1−α)Mc)
iT+h − y

(j)
iT+h. Then choose the

shortest interval that contains b(1 − α)Mc draws.

Define the empirical distribution function based on the draws from the posterior predic-

tive distribution as

F̂ (yiT+h) =
1

M

M∑

j=1

I{y(j)
iT+h ≤ yiT+h}. (A.8)

Then the probability integral transform associated with the density forecast of yiT+h can be

approximated as

PIT (yiT+h) ≈ F̂ (yiT+h). (A.9)

The continuous ranked probability score associated with the density can be approximated

as

CRPS(F̂ , yiT+h) =

∫ ∞

0

(
F̂ (x) − I{yiT+h ≤ x}

)2
dx. (A.10)

Because the density F̂ (yiT+h) is a step function, we can express the integral as a Riemann

sum. To simplify the notation we drop the iT + h subscripts and add an o superscript for

the observed value at which the score is evaluated. Drawing a figure will help with the

subsequent formulas. Define

M∗ =
M∑

j=1

I{y(j) ≤ yo}.
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Case 1: M∗ = M . Then,

CRPS(F̂ , yo) =
M∑

j=2

[
F̂ (y(j−1)) − 0

]2
(y(j) − y(j−1)) +

[
1 − 0

]2
(yo − y(M)). (A.11)

Case 2: M∗ = 0. Then,

CRPS(F̂ , yo) =
[
0 − 1

]2
(y(1) − yo) +

M∑

j=2

[
F̂ (y(j−1)) − 1

]2
(y(j) − y(j−1)). (A.12)

Case 3: 1 ≤ M∗ ≤ M − 1. Then,

CRPS(F̂ , yo) (A.13)

=
M∗∑

j=2

[
F̂ (y(j−1)) − 0

]2
(y(j) − y(j−1)) +

[
F̂ (y(M∗)) − 0

]2
(yo − y(M∗))

+
[
F̂ (y(M∗)) − 1

]2
(y(M∗+1) − yo) +

M∑

j=M∗+2

[
F̂ (y(j−1)) − 1

]2
(y(j) − y(j−1)).

Equivalently, based on Gneiting and Raftery (2007) Equation (21), we have

CRPS(F̂ , yo) =
1

M

M∑

j=1

|y(j) − yo| −
1

M2

∑

1≤i<j≤M

(y(j) − y(i)). (A.14)

To see their equivalence, note that (A.14) can be re-written as follows:

1

M

M∑

j=1

|y(j) − yo| −
1

M 2

∑

1≤i<j≤M

(y(j) − y(i)) (A.15)

=
1

M

[
∑

j>M∗

y(j) −
∑

j≤M∗

y(j) +
(
M∗ − (M − M∗)

)
yo

]

−
1

M2

M∑

j=1

(2j − M − 1)y(j).

=
1

M2

[

−
M∗∑

j=1

(2j − 1)y(j) +
M∑

j=M∗+1

(2M − 2j + 1)y(j)

]

+
2M∗ − M

M
yo.

Considering that F̂ (y(j)) is the empirical distribution, we have

F̂ (y(j)) =
j

M
.
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First, let us look at the more general Case 3. After replacing F̂ (y(j)), the RHS of (A.13)

becomes

M∗∑

j=2

[
F̂ (y(j−1)) − 0

]2
(y(j) − y(j−1)) +

[
F̂ (y(M∗)) − 0

]2
(yo − y(M∗))

+
[
F̂ (y(M∗)) − 1

]2
(y(M∗+1) − yo) +

M∑

j=M∗+2

[
F̂ (y(j−1)) − 1

]2
(y(j) − y(j−1))

=
M∗∑

j=2

(j − 1)2

M2
(y(j) − y(j−1)) +

M2
∗

M2
(yo − y(M∗))

+
(M − M∗)

2

M2
(y(M∗+1) − yo) +

M∑

j=M∗+2

(M − (j − 1))2

M 2
(y(j) − y(j−1))

=
1

M2

[

− y(1) +
M∗∑

j=2

(
(j − 1)2 − j2

)
y(j) +

M−1∑

j=M∗+1

(
(M − (j − 1))2 − (M − j)2

)
y(j)

+y(M) +
(
M2

∗ − (M − M∗)
2
)
yo

]

=
1

M2

[

−
M∗∑

j=1

(2j − 1)y(j) +
M∑

j=M∗+1

(2M − 2j + 1)y(j)

]

+
2M∗ − M

M
yo,

which is the same as (A.15). Similarly, for Case 1, after substituting F̂ , the RHS of (A.11)

becomes

M∑

j=2

[
F̂ (y(j−1)) − 0

]2
(y(j) − y(j−1)) +

[
1 − 0

]2
(yo − y(M))

=
M∑

j=2

(j − 1)2

M 2
(y(j) − y(j−1)) + (yo − y(M))

=
1

M2

[
− y(1) +

M∑

j=2

(
(j − 1)2 − j2

)
y(j)
]
+ yo

= −
1

M2

M∗∑

j=1

(2j − 1)y(j) + yo,

which is equal to (A.15) when M∗ = M . And for Case 2, after substituting F̂ , the RHS of
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(A.12) becomes

[
0 − 1

]2
(y(1) − yo) +

M∑

j=2

[
F̂ (y(j−1)) − 1

]2
(y(j) − y(j−1))

= (y(1) − yo) +
M∑

j=2

(M − (j − 1))2

M2
(y(j) − y(j−1))

=
1

M2

[M−1∑

j=1

(
(M − (j − 1))2 − (M − j)2

)
y(j) + y(M)

]
− yo

=
1

M2

M∑

j=1

(2M − 2j + 1)y(j) − yo,

which is equal to (A.15) when M∗ = 0.
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Table A-1: Sample Sizes After Selection Steps and Summary Statistics for Credit Card Loan
Charge-Off Rates

Sample Sizes Cross-sectional Statistics
Loan t0 Initial Step1 Step2 Step3 Step5 % 0s Mean 75% Max
CLD 2007Q3 7,903 7,903 7,299 3,290 1,304 77 1.5 0.0 106.8
CLD 2007Q4 7,835 7,835 7,219 3,244 1,264 74 1.9 0.1 106.8
CLD 2008Q1 7,692 7,692 7,084 3,204 1,257 71 2.2 0.5 180.2
RRE 2007Q1 7,991 7,991 7,393 6,260 2,654 77 0.2 0.0 33.1
RRE 2007Q2 7,993 7,993 7,383 6,152 2,576 76 0.3 0.0 33.1
RRE 2007Q3 7,903 7,903 7,299 6,193 2,606 73 0.3 0.0 35.9
RRE 2007Q4 7,835 7,835 7,219 6,146 2,581 70 0.4 0.1 69.2
RRE 2008Q1 7,692 7,692 7,084 6,106 2,561 68 0.4 0.2 45.6
RRE 2008Q2 7,701 7,701 7,080 6,029 2,492 67 0.4 0.2 63.6
RRE 2008Q3 7,631 7,631 7,008 6,052 2,577 65 0.5 0.3 39.2
RRE 2008Q4 7,559 7,559 6,938 6,005 2,600 63 0.5 0.3 45.6
RRE 2009Q1 7,480 7,480 6,849 5,971 2,588 62 0.5 0.3 45.0
RRE 2009Q2 8,103 8,103 7,381 5,895 2,536 62 0.5 0.3 45.0
RRE 2009Q3 8,016 8,016 7,302 5,899 2,563 61 0.5 0.4 47.6
RRE 2009Q4 7,940 7,940 7,229 5,846 2,553 60 0.5 0.4 45.0
RRE 2010Q1 7,770 7,770 7,077 5,765 2,494 61 0.5 0.4 45.0
CC 2001Q2 9,031 9,031 8,532 1,691 875 33 3.4 4.7 162.5
CC 2001Q3 8,995 8,995 8,491 1,666 844 33 3.4 4.8 88.9
CC 2001Q4 8,887 8,887 8,382 1,636 836 34 3.3 4.6 88.9
CC 2002Q1 8,723 8,723 8,228 1,612 814 35 3.3 4.4 400.0
CC 2002Q2 8,823 8,823 8,312 1,670 817 38 3.2 4.3 88.9
CC 2002Q3 8,805 8,805 8,286 1,631 821 38 3.2 4.3 88.9
CC 2002Q4 8,728 8,728 8,199 1,606 813 39 3.1 4.1 88.9
CC 2003Q1 8,611 8,611 8,077 1,573 811 40 3.0 4.0 128.5
CC 2003Q2 8,754 8,754 8,203 1,544 787 40 3.0 3.9 136.1
CC 2003Q3 8,755 8,755 8,198 1,513 754 41 2.9 3.8 136.1
CC 2003Q4 8,671 8,671 8,120 1,500 724 42 2.8 3.6 136.1
CC 2004Q1 8,526 8,526 7,989 1,468 707 43 2.7 3.6 136.1
CC 2004Q2 8,662 8,662 8,108 1,440 677 42 2.8 3.6 136.1
CC 2004Q3 8,626 8,626 8,067 1,411 664 43 2.7 3.5 136.1
CC 2004Q4 8,552 8,552 7,989 1,391 657 44 2.6 3.3 140.9
CC 2005Q1 8,384 8,384 7,829 1,369 639 44 2.5 3.2 151.3
CC 2005Q2 8,507 8,507 7,938 1,332 611 44 2.6 3.2 175.0
CC 2005Q3 8,482 8,482 7,897 1,315 596 45 2.6 3.2 175.0
CC 2005Q4 8,404 8,404 7,816 1,290 604 46 2.6 3.2 210.5
CC 2006Q1 8,263 8,263 7,674 1,275 614 47 2.6 3.1 175.0
CC 2006Q2 8,307 8,307 7,708 1,247 594 47 2.7 3.2 269.2
CC 2006Q3 8,240 8,240 7,639 1,231 594 46 2.8 3.4 269.2
CC 2006Q4 8,137 8,137 7,537 1,211 595 45 3.0 3.6 269.2

Notes: This table provides summary statistics for samples with cross-sectional dimension N > 400 and
percentage of zeros less than 80%. The date assigned to each panel refers to t = t0, which is the conditioning
information used to initialize the lag in the dynamic Tobit. We assume that T = 10, which means that
each sample has 12 observations. The descriptive statistics are computed across N and T dimension of each
panel.
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Table A-1: Sample Sizes After Selection Steps and Summary Statistics for Credit Card Loan
Charge-Off Rates (cont.)

Sample Sizes Cross-sectional Statistics
Loan t0 Initial Step1 Step2 Step3 Step5 % 0s Mean 75% Max
CC 2007Q1 7,991 7,991 7,393 1,197 574 44 3.2 3.9 269.2
CC 2007Q2 7,993 7,993 7,383 1,173 561 43 3.3 4.1 269.2
CC 2007Q3 7,903 7,903 7,299 1,159 544 44 3.2 4.2 175.0
CC 2007Q4 7,835 7,835 7,219 1,133 534 43 3.3 4.2 175.0
CC 2008Q1 7,692 7,692 7,084 1,123 527 44 3.3 4.2 175.0
CC 2008Q2 7,701 7,701 7,080 1,101 512 45 3.2 4.1 158.3
CC 2008Q3 7,631 7,631 7,008 1,096 509 44 3.1 4.0 158.3
CC 2008Q4 7,559 7,559 6,938 1,082 506 45 3.1 3.9 149.4
CC 2009Q1 7,480 7,480 6,849 1,059 498 46 3.0 3.7 147.3
CC 2009Q3 8,016 8,016 7,302 1,042 492 47 2.7 3.5 77.6
CC 2009Q4 7,940 7,940 7,229 1,032 479 49 2.7 3.3 400.0
CC 2010Q1 7,770 7,770 7,077 1,020 459 49 2.5 3.2 100.0
CON 2009Q2 8,103 8,103 7,381 5,837 2,600 77 0.4 0.0 77.4
CON 2009Q3 8,016 8,016 7,302 5,872 2,672 71 0.5 0.2 202.2
CON 2009Q4 7,940 7,940 7,229 5,814 2,723 65 0.5 0.5 202.2
CON 2010Q1 7,770 7,770 7,077 5,735 2,680 58 0.7 0.7 202.2

Notes: This table provides summary statistics for samples with cross-sectional dimension N > 400 and
percentage of zeros less than 80%. The date assigned to each panel refers to t = t0, which is the conditioning
information used to initialize the lag in the dynamic Tobit. We assume that T = 10, which means that
each sample has 12 observations. The descriptive statistics are computed across N and T dimension of each
panel.
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C Additional Empirical Results

Figure A-1: Posterior Means of λi vs. σ2
i

Normal π(λ), InvGam π(σ2) Flexible π(λ), π(σ2)

Notes: Credit card charge-off rates, heteroskedastic specification. The estimation sample for the dynamic
Tobit models ranges from 2001Q2 to 2003Q4 (T = 10).

Figure A-1 shoes that here is a cluster of banks for which λ̂i is approximately 2.4 and

ln σ̂2
i is approximately 1.5.
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Figure A-2: Posterior Means of λi vs. σ2
i

Normal π(λ), InvGam π(σ2) Flexible π(λ), π(σ2)

Notes: Credit card charge-off rates. The estimation sample for the dynamic Tobit models ranges from
2001Q2 to 2003Q4 (T = 10).
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